Dimension in the realm of transseries

被引:2
作者
Aschenbrenner, Matthias [1 ]
van den Dries, Lou [2 ]
van der Hoeven, Joris [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Ecole Polytech, F-91128 Palaiseau, France
来源
ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS | 2017年 / 697卷
关键词
DIFFERENTIAL-EQUATIONS; SETS;
D O I
10.1090/conm/697/14044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be the differential field of transseries. We establish some basic properties of the dimension of a definable subset of T-n, also in relation to its codimension in the ambient space T-n. The case of dimension 0 is of special interest, and can be characterized both in topological terms (discreteness) and in terms of the Herwig-Hrushovski-Macpherson notion of co-analyzability.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 15 条
  • [1] Aschenbrenner M., ANN MATH STUD
  • [2] Aschenbrenner Matthias, GROUP STRONG A UNPUB
  • [3] Cell decomposition and dimension function in the theory of closed ordered differential fields
    Brihaye, Thomas
    Michaux, Christian
    Riviere, Cedric
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2009, 159 (1-2) : 111 - 128
  • [4] Freitag J., 2016, PREPRINT
  • [5] TOPOLOGICAL DIFFERENTIAL FIELDS AND DIMENSION FUNCTIONS
    Guzy, Nicolas
    Point, Francoise
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (04) : 1147 - 1164
  • [6] Interpetable groups, stably embedded sets, and Vaughtian pairs
    Herwig, B
    Hrushovski, E
    Macpherson, D
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 1 - 11
  • [7] Hodges W., 1993, Model theory, V42, P772, DOI [DOI 10.1017/CBO9780511551574, 10.1017/CBO9780511551574]
  • [8] JOHNSON J, 1978, T AM MATH SOC, V242, P329
  • [9] Matsuda Michihiko, 1980, LECT NOTES MATH, V804
  • [10] The search for trivial types
    McGrail, T
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) : 263 - 271