A Characterization of Wavelet Families Arising from Biorthogonal MRA's of Multiplicity d

被引:9
作者
Calogero, Andrea [1 ]
Garrigos, Gustavo [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Stat, I-20126 Milan, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
biorthogonal wavelet; dimension function; MRA; wavelet set;
D O I
10.1007/BF02921962
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a necessary and sufficient condition for a pair of wavelet families Psi = {psi(l), ... , psi(L)}, (psi) over tilde = {(psi) over tilde (l), ... ,(psi) over tilde (L)}, in L-2( R-n), to arise from a pair of biorthogonal MRA's. The condition is given in terms of simple equations involving the functions psi(l) and (psi) over tildel. To work in greater generality, we allow multiresolution analyses of arbitrary multiplicity, based on lattice translations and matrix dilations. Our result extends the characterization theorem of G. Gripenberg and X. Wang for dyadic orthonormal wavelets in L-2( IR), and includes, as particular cases, the sufficient conditions of P. Auscher and P. G. Lemarie in the biorthogonal situation.
引用
收藏
页码:187 / 217
页数:31
相关论文
共 42 条
[1]   Affine systems in L-2(R-d) .2. Dual systems [J].
Ron, A ;
Shen, ZW .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) :617-637
[2]   SOLUTION OF 2 PROBLEMS ON WAVELETS [J].
AUSCHER, P .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :181-236
[3]  
Baggett L., 1998, PREPRINT
[4]   Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn [J].
Baggett, LW ;
Medina, HA ;
Merrill, KD .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) :563-573
[5]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[6]  
Calogero A., 1998, THESIS U MILANO
[7]  
Calogero A., 2000, J GEOM ANAL, V11, P597
[8]  
CANUTO C, 1999, QUADERNI UMI, V46
[9]   A STABILITY-CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME [J].
COHEN, A ;
DAUBECHIES, I .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) :313-335
[10]   COMPACTLY SUPPORTED BIDIMENSIONAL WAVELET BASES WITH HEXAGONAL SYMMETRY [J].
COHEN, A ;
SCHLENKER, JM .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :209-236