Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications

被引:153
作者
Medina, Henry [1 ]
Lin, Yung-Chang [1 ]
Jin, Chuanhong [2 ]
Lu, Chun-Chieh [1 ]
Yeh, Chao-Hui [1 ]
Huang, Kun-Ping [3 ]
Suenaga, Kazu [2 ]
Robertson, John [4 ]
Chiu, Po-Wen [1 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[3] Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu 31040, Taiwan
[4] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
关键词
graphene; metal-free; chemical vapor deposition; transparent conducting electrodes; DIAMOND-LIKE CARBON; GRAPHENE OXIDE; LARGE-AREA; FILMS;
D O I
10.1002/adfm.201102423
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conventional methods to prepare large-area graphene for transparent conducting electrodes involve the wet etching of the metal catalyst and the transfer of the graphene film, which can degrade the film through the creation of wrinkles, cracks, or tears. The resulting films may also be obscured by residual metal impurities and polymer contaminants. Here, it is shown that direct growth of large-area flat nanographene films on silica can be achieved at low temperature (400 degrees C) by chemical vapor deposition without the use of metal catalysts. Raman spectroscopy and TEM confirm the formation of a hexagonal atomic network of sp2-bonded carbon with a domain size of about 35 nm. Further spectroscopic analysis reveals the formation of SiC between the nanographene and SiO2, indicating that SiC acts as a catalyst. The optical transmittance of the graphene films is comparable with transferred CVD graphene grown on Cu foils. Despite the fact that the electrical conductivity is an order of magnitude lower than CVD graphene grown on metals, the sheet resistance remains 12 orders of magnitude better than well-reduced graphene oxides.
引用
收藏
页码:2123 / 2128
页数:6
相关论文
共 42 条
[1]   Formation of amorphous carbon thin films by plasma source ion implantation [J].
Baba, K ;
Hatada, R .
SURFACE & COATINGS TECHNOLOGY, 1998, 104 :235-239
[2]   Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition [J].
Bachmatiuk, Alicja ;
Boerrnert, Felix ;
Grobosch, Mandy ;
Schaeffel, Franziska ;
Wolff, Ulrike ;
Scott, Andrew ;
Zaka, Mujtaba ;
Warner, Jamie H. ;
Klingeler, Ruediger ;
Knupfer, Martin ;
Buechner, Bernd ;
Ruemmeli, Mark H. .
ACS NANO, 2009, 3 (12) :4098-4104
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   Doping dependence of the Raman peaks intensity of graphene close to the Dirac point [J].
Casiraghi, C. .
PHYSICAL REVIEW B, 2009, 80 (23)
[7]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[8]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[9]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[10]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613