Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system

被引:159
作者
Tao, Youshan [1 ]
Winkler, Michael [2 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
[2] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
Chemotaxis; Navier-Stokes; Boundedness; Large time behavior; 3-DIMENSIONAL CHEMOTAXIS SYSTEM; GLOBAL EXISTENCE; EVENTUAL SMOOTHNESS; NONLINEAR DIFFUSION; WEAK SOLUTIONS; BOUNDEDNESS; MODEL; STABILIZATION; AGGREGATION; SENSITIVITY;
D O I
10.1007/s00033-016-0732-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an initial-boundary value problem in a two-dimensional smoothly bounded domain for the Keller-Segel-Navier-Stokes system with logistic source, as given by {n(t) + u . del n = Delta n - del . (n del c) + rn - mu n(2), c(t) + u . del c = Delta c - c + n, u(t) + u . del u = Delta u - del P + n del phi + g, del . u = 0, which describes the mutual interaction of chemotactically moving microorganisms and their surrounding incompressible fluid. It is shown that whenever mu > 0, r >= 0, g is an element of C-1((Omega) over bar x [0, infinity)) boolean AND L-infinity(Omega x (0, infinity)) and the initial data (n(0), c(0), u(0)) are sufficiently smooth fulfilling n(0) (sic) 0, the considered problem possesses a global classical solution which is bounded. Moreover, if r = 0, then this solution satisfies n(., t) -> 0 and c(., t) -> 0 in L-infinity(Omega) as t -> 8, and if additionally integral(0) integral(Omega)vertical bar g(x, t)vertical bar(2)dxdt < infinity, then all solution components decay in the sense that n(., t) -> 0, c(., t) -> 0 and u(., t) -> 0 in L infinity(Omega) as t -> infinity.
引用
收藏
页数:23
相关论文
共 46 条
[1]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[4]   Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation [J].
Cao, Xinru ;
Ishida, Sachiko .
NONLINEARITY, 2014, 27 (08) :1899-1913
[5]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[6]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[7]   CHEMICAL ASPECTS OF MASS SPAWNING IN CORALS .1. SPERM-ATTRACTANT MOLECULES IN THE EGGS OF THE SCLERACTINIAN CORAL MONTIPORA-DIGITATA [J].
COLL, JC ;
BOWDEN, BF ;
MEEHAN, GV ;
KONIG, GM ;
CARROLL, AR ;
TAPIOLAS, DM ;
ALINO, PM ;
HEATON, A ;
DENYS, R ;
LEONE, PA ;
MAIDA, M ;
ACERET, TL ;
WILLIS, RH ;
BABCOCK, RC ;
WILLIS, BL ;
FLORIAN, Z ;
CLAYTON, MN ;
MILLER, RL .
MARINE BIOLOGY, 1994, 118 (02) :177-182
[8]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[9]   Self-concentration and large-scale coherence in bacterial dynamics [J].
Dombrowski, C ;
Cisneros, L ;
Chatkaew, S ;
Goldstein, RE ;
Kessler, JO .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :098103-1
[10]   A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion [J].
Duan, Renjun ;
Xiang, Zhaoyin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) :1833-1852