Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system

被引:150
作者
Tao, Youshan [1 ]
Winkler, Michael [2 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
[2] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 06期
基金
中国国家自然科学基金;
关键词
Chemotaxis; Navier-Stokes; Boundedness; Large time behavior; 3-DIMENSIONAL CHEMOTAXIS SYSTEM; GLOBAL EXISTENCE; EVENTUAL SMOOTHNESS; NONLINEAR DIFFUSION; WEAK SOLUTIONS; BOUNDEDNESS; MODEL; STABILIZATION; AGGREGATION; SENSITIVITY;
D O I
10.1007/s00033-016-0732-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an initial-boundary value problem in a two-dimensional smoothly bounded domain for the Keller-Segel-Navier-Stokes system with logistic source, as given by {n(t) + u . del n = Delta n - del . (n del c) + rn - mu n(2), c(t) + u . del c = Delta c - c + n, u(t) + u . del u = Delta u - del P + n del phi + g, del . u = 0, which describes the mutual interaction of chemotactically moving microorganisms and their surrounding incompressible fluid. It is shown that whenever mu > 0, r >= 0, g is an element of C-1((Omega) over bar x [0, infinity)) boolean AND L-infinity(Omega x (0, infinity)) and the initial data (n(0), c(0), u(0)) are sufficiently smooth fulfilling n(0) (sic) 0, the considered problem possesses a global classical solution which is bounded. Moreover, if r = 0, then this solution satisfies n(., t) -> 0 and c(., t) -> 0 in L-infinity(Omega) as t -> 8, and if additionally integral(0) integral(Omega)vertical bar g(x, t)vertical bar(2)dxdt < infinity, then all solution components decay in the sense that n(., t) -> 0, c(., t) -> 0 and u(., t) -> 0 in L infinity(Omega) as t -> infinity.
引用
收藏
页数:23
相关论文
共 46 条
  • [1] [Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
  • [2] [Anonymous], PREPRINT
  • [3] [Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
  • [4] Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation
    Cao, Xinru
    Ishida, Sachiko
    [J]. NONLINEARITY, 2014, 27 (08) : 1899 - 1913
  • [5] Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) : 1205 - 1235
  • [6] EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2271 - 2297
  • [7] CHEMICAL ASPECTS OF MASS SPAWNING IN CORALS .1. SPERM-ATTRACTANT MOLECULES IN THE EGGS OF THE SCLERACTINIAN CORAL MONTIPORA-DIGITATA
    COLL, JC
    BOWDEN, BF
    MEEHAN, GV
    KONIG, GM
    CARROLL, AR
    TAPIOLAS, DM
    ALINO, PM
    HEATON, A
    DENYS, R
    LEONE, PA
    MAIDA, M
    ACERET, TL
    WILLIS, RH
    BABCOCK, RC
    WILLIS, BL
    FLORIAN, Z
    CLAYTON, MN
    MILLER, RL
    [J]. MARINE BIOLOGY, 1994, 118 (02) : 177 - 182
  • [8] CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR
    Di Francesco, Marco
    Lorz, Alexander
    Markowich, Peter A.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1437 - 1453
  • [9] Self-concentration and large-scale coherence in bacterial dynamics
    Dombrowski, C
    Cisneros, L
    Chatkaew, S
    Goldstein, RE
    Kessler, JO
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (09) : 098103 - 1
  • [10] A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion
    Duan, Renjun
    Xiang, Zhaoyin
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) : 1833 - 1852