Bayesian flood frequency analysis in the light of model and parameter uncertainties

被引:49
作者
Liang, Zhongmin [1 ]
Chang, Wenjuan [1 ]
Li, Binquan [1 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Flood frequency analysis; Quantile estimation; Markov Chain Monte Carlo; Model uncertainty; Parameter uncertainty; APPROXIMATE CONFIDENCE-INTERVALS; DESIGN FLOODS; QUANTILE; INFORMATION; ALGORITHM;
D O I
10.1007/s00477-011-0552-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The specific objective of the paper is to propose a new flood frequency analysis method considering uncertainty of both probability distribution selection (model uncertainty) and uncertainty of parameter estimation (parameter uncertainty). Based on Bayesian theory sampling distribution of quantiles or design floods coupling these two kinds of uncertainties is derived, not only point estimator but also confidence interval of the quantiles can be provided. Markov Chain Monte Carlo is adopted in order to overcome difficulties to compute the integrals in estimating the sampling distribution. As an example, the proposed method is applied for flood frequency analysis at a gauge in Huai River, China. It has been shown that the approach considering only model uncertainty or parameter uncertainty could not fully account for uncertainties in quantile estimations, instead, method coupling these two uncertainties should be employed. Furthermore, the proposed Bayesian-based method provides not only various quantile estimators, but also quantitative assessment on uncertainties of flood frequency analysis.
引用
收藏
页码:721 / 730
页数:10
相关论文
共 50 条
[21]   Getting From Here to Where? Flood Frequency Analysis and Climate [J].
Stedinger, Jery R. ;
Griffis, Veronica W. .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2011, 47 (03) :506-513
[22]   Bias compensation in flood frequency analysis [J].
He, Jianxun ;
Anderson, Axel ;
Valeo, Caterina .
HYDROLOGICAL SCIENCES JOURNAL, 2015, 60 (03) :381-401
[23]   Laminate optimization incorporating analysis and model parameter uncertainties for predictable failure [J].
Salas, Pablo ;
Venkataraman, Satchi .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 37 (06) :541-555
[24]   Laminate optimization incorporating analysis and model parameter uncertainties for predictable failure [J].
Pablo Salas ;
Satchi Venkataraman .
Structural and Multidisciplinary Optimization, 2009, 37
[25]   ROBUST OPTIMIZATION WITH PARAMETER AND MODEL UNCERTAINTIES USING GAUSSIAN PROCESSES [J].
Zhang, Yanjun ;
Li, Mian ;
Zhang, Jun ;
Li, Guoshu .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 2B, 2016, :573-585
[26]   Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes [J].
Zhang, Yanjun ;
Li, Mian ;
Zhang, Jun ;
Li, Guoshu .
JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
[27]   Multidisciplinary robust design optimization under parameter and model uncertainties [J].
Li, Wei ;
Gao, Liang ;
Xiao, Mi .
ENGINEERING OPTIMIZATION, 2020, 52 (03) :426-445
[28]   Flood frequency analysis [J].
S. Baidya ;
Ajay Singh ;
Sudhindra N. Panda .
Natural Hazards, 2020, 100 :1137-1158
[29]   Flood frequency analysis [J].
Baidya, S. ;
Singh, Ajay ;
Panda, Sudhindra N. .
NATURAL HAZARDS, 2020, 100 (03) :1137-1158
[30]   Continental Scale Regional Flood Frequency Analysis: Combining Enhanced Datasets and a Bayesian Framework [J].
Alexandre, Duy Anh ;
Chaudhuri, Chiranjib ;
Gill-Fortin, Jasmin .
HYDROLOGY, 2024, 11 (08)