Periodic subgroups of projective linear groups in positive characteristic

被引:0
作者
Detinko, Alla S. [1 ]
Flannery, Dane L. [1 ]
机构
[1] Natl Univ Ireland, Dept Math, Galway, Ireland
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2008年 / 6卷 / 03期
基金
爱尔兰科学基金会;
关键词
linear group; periodic group; projective general linear group; field; classification;
D O I
10.2478/s11533-008-0033-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the maximal irreducible periodic subgroups of PGL(q; F), where F is a field of positive characteristic p transcendental over its prime subfield, q not equal p is prime, and F-x has an element of order q. That is, we construct a list of irreducible subgroups G of GL(q; F) containing the centre Fx1(q) of GL(q; F), such that G/Fx1(q) is a maximal periodic subgroup of PGL(q; F), and if H is another group of this kind then H is GL(q; F)-conjugate to a group in the list. We give criteria for determining when two listed groups are conjugate, and show that a maximal irreducible periodic subgroup of PGL(q; F) is self-normalising.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 50 条
[31]   Periodic linear groups in which permutability is a transitive relation [J].
Maria Ferrara ;
Marco Trombetti .
Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 :361-383
[32]   A note on conjugacy of supplements in soluble periodic linear groups [J].
Trombetti, Marco .
FORUM MATHEMATICUM, 2025, 37 (04) :1217-1219
[33]   Linear groups with minimality condition for some infinite-dimensional subgroups [J].
Dixon M.R. ;
Kurdachenko L.A. ;
Evans M.J. .
Ukrainian Mathematical Journal, 2005, 57 (11) :1726-1740
[34]   Nonpronormal subgroups of odd index in finite simple linear and unitary groups [J].
Guo, W. ;
Maslova, N., V ;
Revin, D. O. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (01) :70-79
[35]   Nonpronormal Subgroups of Odd Index in Finite Simple Linear and Unitary Groups [J].
Guo, Wenbin ;
Maslova, N. V. ;
Revin, D. O. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) :S114-S122
[36]   The structure of linear PF-Engel groups in characteristic zero [J].
Wehrfritz, B. A. F. .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (01) :1-7
[37]   On the non-periodic groups, whose subgroups of infinite special rank are transitively normal [J].
Kurdachenko, L. A. ;
Subbotin, I. Ya. ;
Velychko, T. V. .
ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01) :74-84
[38]   The structure of linear PF-Engel groups in characteristic zero [J].
B. A. F. Wehrfritz .
Bollettino dell'Unione Matematica Italiana, 2020, 13 :1-7
[39]   FUSION OF 2-ELEMENTS IN PERIODIC GROUPS WITH FINITE SYLOW 2-SUBGROUPS [J].
Lytkina, D., V ;
Mazurov, V. D. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :1953-1958
[40]   On Periodic Shunkov's Groups with Almost Layer-finite Normalizers of Finite Subgroups [J].
Senashov, V., I .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2021, 37 :118-132