Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting

被引:68
作者
Yang, Hui [1 ]
Bright, Joeseph [1 ]
Kasani, Sujan [4 ]
Zheng, Peng [1 ]
Musho, Terence [1 ]
Chen, Banglin [5 ]
Huang, Ling [6 ]
Wu, Nianqiang [1 ,2 ,3 ]
机构
[1] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] West Virginia Univ, C Eugene Bennett Dept Chem, Morgantown, WV 26506 USA
[3] West Virginia Univ, Dept Pharmaceut Sci, Morgantown, WV 26506 USA
[4] West Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
[5] Univ Texas San Antonio, Dept Chem, One UTSA Circle, San Antonio, TX 78249 USA
[6] Nanjing Tech Univ NanjingTech, IAM, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
关键词
metal-organic framework; water-splitting; p-n junction; photoanode; titanium dioxide; HYDROGEN GENERATION; CATALYSTS; ENERGY; STORAGE; FILMS;
D O I
10.1007/s12274-019-2272-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core-shell nanorod array is formed by coating an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core-shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p-n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electrons and holes out of the TiO2 nanorods. In addition, the MOF coating significantly improves the efficiency of charge injection at the photoanode/electrolyte interface. Introduction of Co(III) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm(2) at 1.23 V (vs. RHE), which is similar to 2.7 times the photocurrent achieved with bare TiO2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm(2).
引用
收藏
页码:643 / 650
页数:8
相关论文
共 52 条
[11]   Porphyrinic metal-organic frameworks from custom-designed porphyrins [J].
Huh, Seong ;
Kim, Sung-Jin ;
Kim, Youngmee .
CRYSTENGCOMM, 2016, 18 (03) :345-368
[12]   Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating [J].
Hwang, Yun Jeong ;
Hahn, Chris ;
Liu, Bin ;
Yang, Peidong .
ACS NANO, 2012, 6 (06) :5060-5069
[13]   A vector model for analysing the surface photovoltage amplitude and phase spectra applied to complicated nanostructures [J].
Ivanov, Ts ;
Donchev, V. ;
Germanova, K. ;
Kirilov, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (13)
[14]   An Exceptionally Stable, Porphyrinic Zr Metal-Organic Framework Exhibiting pH-Dependent Fluorescence [J].
Jiang, Hai-Long ;
Feng, Dawei ;
Wang, Kecheng ;
Gu, Zhi-Yuan ;
Wei, Zhangwen ;
Chen, Ying-Pin ;
Zhou, Hong-Cai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (37) :13934-13938
[15]   Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting [J].
Kang, Donghyeon ;
Kim, Tae Woo ;
Kubota, Stephen R. ;
Cardiel, Allison C. ;
Cha, Hyun Gil ;
Choi, Kyoung-Shin .
CHEMICAL REVIEWS, 2015, 115 (23) :12839-12887
[16]   Toward solar fuels: Water splitting with sunlight and "rust"? [J].
Katz, Michael J. ;
Riha, Shannon C. ;
Jeong, Nak Cheon ;
Martinson, Alex B. F. ;
Farha, Omar K. ;
Hupp, Joseph T. .
COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) :2521-2529
[17]   Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting [J].
Kim, Tae Woo ;
Choi, Kyoung-Shin .
SCIENCE, 2014, 343 (6174) :990-994
[18]   Surface photovoltage phenomena: theory, experiment, and applications [J].
Kronik, L ;
Shapira, Y .
SURFACE SCIENCE REPORTS, 1999, 37 (1-5) :1-206
[19]   Metal-organic frameworks: Structural, energetic, electronic, and mechanical properties [J].
Kuc, A. ;
Enyashin, A. ;
Seifert, G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (28) :8179-8186
[20]   SEMICONDUCTOR SURFACE SPECTROSCOPIES - THE EARLY YEARS [J].
LAGOWSKI, J .
SURFACE SCIENCE, 1994, 299 (1-3) :92-101