Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet

被引:232
作者
Buchanan, Lauren E. [1 ]
Dunkelberger, Emily B. [1 ]
Tran, Huong Q. [1 ]
Cheng, Pin-Nan [2 ]
Chiu, Chi-Cheng [3 ,4 ]
Cao, Ping [5 ]
Raleigh, Daniel P. [5 ]
de Pablo, Juan J. [3 ,4 ]
Nowick, James S. [2 ]
Zanni, Martin T. [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[3] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Lemont, IL 60439 USA
[5] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
inhibitors; aggregation pathway; vibrational coupling; POLYPEPTIDE IAPP; AMYLIN FIBRILS; SOLID-STATE; ISLET; PROTEIN; AGGREGATION; SPECTROSCOPY; FIBRILLOGENESIS; IDENTIFICATION; INHIBITOR;
D O I
10.1073/pnas.1314481110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel beta-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize beta-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric beta-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.
引用
收藏
页码:19285 / 19290
页数:6
相关论文
共 49 条
[1]   A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor [J].
Abedini, Andisheh ;
Meng, Fanling ;
Raleigh, Daniel P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (37) :11300-+
[2]   THE STRUCTURAL BASIS OF PANCREATIC AMYLOID FORMATION - ISOTOPE-EDITED SPECTROSCOPY IN THE SOLID-STATE [J].
ASHBURN, TT ;
AUGER, M ;
LANSBURY, PT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (02) :790-791
[3]   Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence [J].
Ban, T ;
Hamada, D ;
Hasegawa, K ;
Naiki, H ;
Goto, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) :16462-16465
[4]   SEQUENCE DIVERGENCE IN A SPECIFIC REGION OF ISLET AMYLOID POLYPEPTIDE (IAPP) EXPLAINS DIFFERENCES IN ISLET AMYLOID FORMATION BETWEEN SPECIES [J].
BETSHOLTZ, C ;
CHRISTMANSSON, L ;
ENGSTROM, U ;
RORSMAN, F ;
SVENSSON, V ;
JOHNSON, KH ;
WESTERMARK, P .
FEBS LETTERS, 1989, 251 (1-2) :261-264
[5]   Membrane Disruption and Early Events in the Aggregation of the Diabetes Related Peptide IAPP from a Molecular Perspective [J].
Brender, Jeffrey R. ;
Salamekh, Samer ;
Ramamoorthy, Ayyalusamy .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (03) :454-462
[6]   Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes -: Evidence for role of islet amyloid formation rather than direct action of amyloid [J].
Butler, AE ;
Janson, J ;
Soeller, WC ;
Butler, PC .
DIABETES, 2003, 52 (09) :2304-2314
[7]   Islet amyloid: From fundamental biophysics to mechanisms of cytotoxicity [J].
Cao, Ping ;
Marek, Peter ;
Noor, Harris ;
Patsalo, Vadim ;
Tu, Ling-Hsien ;
Wang, Hui ;
Abedini, Andisheh ;
Raleigh, Daniel P. .
FEBS LETTERS, 2013, 587 (08) :1106-1118
[8]  
Cheng PN, 2012, NAT CHEM, V4, P927, DOI [10.1038/NCHEM.1433, 10.1038/nchem.1433]
[9]   Protein misfolding, functional amyloid, and human disease [J].
Chiti, Fabrizio ;
Dobson, Christopher M. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :333-366
[10]   Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism [J].
Cohen, Samuel I. A. ;
Linse, Sara ;
Luheshi, Leila M. ;
Hellstrand, Erik ;
White, Duncan A. ;
Rajah, Luke ;
Otzen, Daniel E. ;
Vendruscolo, Michele ;
Dobson, Christopher M. ;
Knowles, Tuomas P. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (24) :9758-9763