Identification of Auto-Regressive Exogenous Hammerstein Models Based on Support Vector Machine Regression

被引:9
作者
Al-Dhaifllah, Mujahed [1 ]
Westwick, David T. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Syst Engn, Dhahran 31261, Saudi Arabia
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hammerstein; identification; support vector machines (SVMs); SYSTEMS;
D O I
10.1109/TCST.2012.2228193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper extends the algorithms used to fit standard support vector machines (SVMs) to the identification of auto-regressive exogenous (ARX) input Hammerstein models consisting of a SVM, which models the static nonlinearity, followed by an ARX representation of the linear element. The model parameters can be estimated by minimizing an epsilon-insensitive loss function, which can be either linear or quadratic. In addition, the value of the uncertainty level, epsilon, can be specified by the user, which gives control over the sparseness of the solution. The effects of these choices are demonstrated using both simulated and experimental data.
引用
收藏
页码:2083 / 2090
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[2]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[3]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[4]   NONITERATIVE METHOD FOR IDENTIFICATION USING HAMMERSTEIN MODEL [J].
CHANG, FHI ;
LUUS, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :464-+
[5]   Identification of Hammerstein models with cubic spline nonlinearities [J].
Dempsey, EJ ;
Westwick, DT .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (02) :237-245
[6]   Partially linear models and least squares support vector machines [J].
Espinoza, M ;
Suykens, JAK ;
De Moor, B .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :3388-3393
[7]   Identification of MIMO Hammerstein models using least squares support vector machines [J].
Goethals, I ;
Pelckmans, K ;
Suykens, JAK ;
De Moor, B .
AUTOMATICA, 2005, 41 (07) :1263-1272
[8]   Subspace identification of Hammerstein systems using least squares support vector machines [J].
Goethals, I ;
Pelckmans, K ;
Suykens, JAK ;
De Moor, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) :1509-1519
[9]  
Hachino T., 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904), P124
[10]   Neural network approach for identification of Hammerstein systems [J].
Janczak, A .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (17) :1749-1766