Sn dendrites for electrocatalytic N2reduction to NH3under ambient conditions

被引:59
作者
Lv, Xu [1 ]
Wang, Fengyi [1 ]
Du, Juan [1 ]
Liu, Qian [2 ]
Luo, Yongsong [2 ]
Lu, Siyu [3 ]
Chen, Guang [4 ]
Gao, Shuyan [5 ]
Zheng, Baozhan [1 ]
Sun, Xuping [2 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[3] Zhengzhou Univ, Green Catalysis Ctr, Zhengzhou 450001, Henan, Peoples R China
[4] Qufu Normal Univ, Green Key Lab Life Organ Anal, Key Lab Pharmaceut Intermediates & Anal Nat Med, Sch Chem & Chem Engn, Qufu 273165, Shandong, Peoples R China
[5] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2020年 / 4卷 / 09期
基金
中国国家自然科学基金;
关键词
ATMOSPHERIC-PRESSURE; NITROGEN REDUCTION; AMMONIA-SYNTHESIS; HIGH SELECTIVITY; RATIONAL DESIGN; N-2; REDUCTION; NH3; SYNTHESIS; WATER; NANOPARTICLES; TEMPERATURE;
D O I
10.1039/d0se00828a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrial-scale synthesis of NH(3)mainly relies on the energy-intensive Haber-Bosch technology, which not only needs harsh conditions but also produces a large amount of CO2. Electrochemical N(2)reduction is regarded as an environmentally friendly method for artificial N-2-to-NH(3)conversion, but needs efficient catalysts for the N(2)reduction reaction (NRR). Here, we report that Sn dendrites on Sn foil act as a non-noble-metal electrocatalyst for the electrochemical NRR under ambient conditions. This electrocatalyst affords an NH(3)yield of 5.66 x 10(-11)mol s(-1)cm(-2)and a Faraday efficiency of 3.67% at -0.60 Vversusthe reversible hydrogen electrode in 0.1 M PBS (pH = 7.0), with high electrochemical durability.
引用
收藏
页码:4469 / 4472
页数:4
相关论文
共 47 条
  • [1] [Anonymous], 2018, SMALL METHODS
  • [2] Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy
    Chen, Gao-Feng
    Cao, Xinrui
    Wu, Shunqing
    Zeng, Xingye
    Ding, Liang-Xin
    Zhu, Min
    Wang, Haihui
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (29) : 9771 - 9774
  • [3] Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst
    Chen, Shiming
    Perathoner, Siglinda
    Ampelli, Claudio
    Mebrahtu, Chalachew
    Su, Dangsheng
    Centi, Gabriele
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (10) : 2699 - 2703
  • [4] Electronically Coupled SnO2 Quantum Dots and Graphene for Efficient Nitrogen Reduction Reaction
    Chu, Ke
    Liu, Ya-ping
    Li, Yu-biao
    Wang, Jing
    Zhang, Hu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) : 31806 - 31815
  • [5] Efficient electrocatalytic N2 reduction on CoO quantum dots
    Chu, Ke
    Liu, Ya-ping
    Li, Yu-biao
    Zhang, Hu
    Tian, Ye
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) : 4389 - 4394
  • [6] Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification
    Deng, Guorong
    Wang, Ting
    Alshehri, Abdulmohsen Ali
    Alzahrani, Khalid Ahmed
    Wang, Yan
    Ye, Hejiang
    Luo, Yonglan
    Sun, Xuping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (38) : 21674 - 21677
  • [7] Dybkjaer I., 1995, AMMONIA, P199, DOI [10.1007/978-3-642-79197-0_6, DOI 10.1007/978-3-642-79197-0_6]
  • [8] Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators
    Gao, Shuyan
    Zhu, Yingzheng
    Chen, Ye
    Tian, Miao
    Yang, Yingjie
    Jiang, Tao
    Wang, Zhong Lin
    [J]. MATERIALS TODAY, 2019, 28 : 17 - 24
  • [9] Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions
    Guo, Chunxian
    Ran, Jingrun
    Vasileff, Anthony
    Qiao, Shi-Zhang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) : 45 - 56
  • [10] Hierarchical Cobalt Phosphide Hollow Nanocages toward Electrocatalytic Ammonia Synthesis under Ambient Pressure and Room Temperature
    Guo, Wenhan
    Liang, Zibin
    Zhao, Junliang
    Zhu, Bingjun
    Cai, Kunting
    Zou, Ruqiang
    Xu, Qiang
    [J]. SMALL METHODS, 2018, 2 (12):