Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles

被引:46
作者
Jiang, Tiefeng [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Haar measure; Eigenvalue; Random matrix; Largest eigenvalue; Empirical distribution; Limiting distribution; SMALLEST EIGENVALUE; SPECTRAL-ANALYSIS; ROOTS; THEOREMS; ENTRIES; MODELS; BOUNDS;
D O I
10.1007/s00440-008-0146-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a tool to approximate the entries of a large dimensional complex Jacobi ensemble with independent complex Gaussian random variables. Based on this and the author's earlier work in this direction, we obtain the Tracy-Widom law of the largest singular values of the Jacobi emsemble. Moreover, the circular law, the Marchenko-Pastur law, the central limit theorem, and the laws of large numbers for the spectral norms are also obtained.
引用
收藏
页码:221 / 246
页数:26
相关论文
共 52 条
[1]  
Bai ZD, 1999, STAT SINICA, V9, P611
[2]  
Bai ZD, 2004, ANN PROBAB, V32, P553
[3]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[4]   CONVERGENCE TO THE SEMICIRCLE LAW [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (02) :863-875
[5]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[6]   MESOSCOPIC TRANSPORT THROUGH CHAOTIC CAVITIES - A RANDOM S-MATRIX THEORY APPROACH [J].
BARANGER, HU ;
MELLO, PA .
PHYSICAL REVIEW LETTERS, 1994, 73 (01) :142-145
[7]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[8]   BOUNDS FOR THE VARIATION OF THE ROOTS OF A POLYNOMIAL AND THE EIGENVALUES OF A MATRIX [J].
BHATIA, R ;
ELSNER, L ;
KRAUSE, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 142 :195-209
[9]  
BOHIGAS O, 1991, CHAOS QUANTUM PHYSIC, P89
[10]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38