Noise Properties of ZnO Nanowalls Deposited Using Rapid Thermal Evaporation Technology

被引:6
作者
Chen, T. P. [1 ,2 ]
Hung, F. Y. [3 ]
Chang, S. P. [1 ,2 ]
Chang, S. J. [1 ,2 ]
Wu, S. L. [4 ]
Hu, Z. S. [3 ]
机构
[1] Natl Cheng Kung Univ, Inst Microelect, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Dept Elect Engn, Adv Optoelect Technol Ctr, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Inst Nanotechnol & Microsyst Engn, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
[4] Cheng Shiu Univ, Dept Elect Engn, Kaohsiung 833, Taiwan
关键词
Flicker noise; low temperature; nanowalls; ultraviolet (UV); ZnO; PHOTOLUMINESCENCE; GROWTH; NANOSTRUCTURES; NANOWIRE;
D O I
10.1109/LPT.2012.2233731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ZnO nanowalls are rapidly grown on a glass substrate using a low-temperature thermal evaporation method, without the use of a catalyst and the pre-deposition of a ZnO seed layer on the substrate. Most of the ZnO nanowalls are grown vertically and are about 70-200-nm thick and 2-mu m long. The room-temperature photoluminescence spectra show a strong intrinsic ultraviolet (UV) emission and a weak defect-related orange emission. The ZnO nanowall UV sensor is highly sensitive to UV light, with an excellent UV-to-visible ratio and good flicker noise characteristics. This shows the strong potential of ZnO nanowalls for use in UV sensors. At an applied bias of 2 V, the noise equivalent power and the normalized detectivity of the ZnO nanowall UV sensor are 1.87 x 10(-10) W and 3.38 x 10(9) cm.Hz(0.5).W-1, respectively.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 26 条
[1]   Characterization of Excited-State Magnetic Exchange in Mn2+-Doped ZnO Quantum Dots Using Time-Dependent Density Functional Theory [J].
Badaeva, Ekaterina ;
May, Joseph W. ;
Ma, Jiao ;
Gamelin, Daniel R. ;
Li, Xiaosong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (43) :20986-20991
[2]   High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates [J].
Bai, Suo ;
Wu, Weiwei ;
Qin, Yong ;
Cui, Nuanyang ;
Bayerl, Dylan J. ;
Wang, Xudong .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (23) :4464-4469
[3]   Schottky barrier detectors on GaN for visible-blind ultraviolet detection [J].
Chen, Q ;
Yang, JW ;
Osinsky, A ;
Gangopadhyay, S ;
Lim, B ;
Anwar, MZ ;
Khan, MA ;
Kuksenkov, D ;
Temkin, H .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2277-2279
[4]   Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils [J].
Dar, G. N. ;
Umar, Ahmad ;
Zaidi, Shabi Abbas ;
Baskoutas, S. ;
Hwang, S. W. ;
Abaker, M. ;
Al-Hajry, A. ;
Al-Sayari, S. A. .
TALANTA, 2012, 89 :155-161
[5]   Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength [J].
Djurisic, AB ;
Leung, YH ;
Tam, KH ;
Ding, L ;
Ge, WK ;
Chen, HY ;
Gwo, S .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[6]   A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres [J].
Fang, Bin ;
Zhang, Cuihong ;
Wang, Guangfeng ;
Wang, Meifang ;
Ji, Yulan .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 155 (01) :304-310
[7]   DIRECT RECORDING OF OPTICAL-GAIN SPECTRA FROM ZNO [J].
HVAM, JM .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (06) :3124-3126
[8]   Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient [J].
Jeong, SH ;
Kim, BS ;
Lee, BT .
APPLIED PHYSICS LETTERS, 2003, 82 (16) :2625-2627
[9]   Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit [J].
Kim, SJ ;
Ono, T ;
Esashi, M .
APPLIED PHYSICS LETTERS, 2006, 88 (05) :1-3
[10]   Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators [J].
Kumar, Brijesh ;
Lee, Keun Young ;
Park, Hyun-Kyu ;
Chae, Seung Jin ;
Lee, Young Hee ;
Kim, Sang-Woo .
ACS NANO, 2011, 5 (05) :4197-4204