SOFICITY, AMENABILITY, AND DYNAMICAL ENTROPY

被引:47
作者
Kerr, David [1 ]
Li, Hanfeng [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
AMENABLE-GROUPS;
D O I
10.1353/ajm.2013.0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper the authors developed an operator-algebraic approach to Lewis Bowen's sofic measure entropy that yields invariants for actions of countable sofic groups by homeomorphisms on a compact metrizable space and by measure-preserving transformations on a standard probability space. We show here that these measure and topological entropy invariants both coincide with their classical counterparts when the acting group is amenable.
引用
收藏
页码:721 / 761
页数:41
相关论文
共 17 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], I HAUTES ETUDES SCI
[3]  
[Anonymous], 1963, Trans. Amer. Math. Soc., DOI [DOI 10.2307/1993903, 10.1090/S0002-9947-1963-0159923-5]
[4]  
[Anonymous], GRAD TEXTS MATH
[5]  
[Anonymous], 1982, GRAD TEXTS MATH
[6]   Sofic entropy and amenable groups [J].
Bowen, Lewis .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :427-466
[7]   MEASURE CONJUGACY INVARIANTS FOR ACTIONS OF COUNTABLE SOFIC GROUPS [J].
Bowen, Lewis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) :217-245
[9]   The strong approximation conjecture holds for amenable groups [J].
Elek, Gabor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (01) :345-355
[10]  
Kechris AS, 2004, LECT NOTES MATH, V1852