MESH DEPENDENT STABILITY AND CONDITION NUMBER ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF PARABOLIC PROBLEMS

被引:0
作者
Zhu, Liyong [1 ,2 ]
Du, Qiang [3 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Stable time step size; condition number; mesh quality; finite element method; unstructured mesh; parabolic problem; STIFFNESS MATRIX; EQUATIONS; BOUNDS; EIGENVALUES; GEOMETRY; SYSTEMS; ERROR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the effects of spatial simplicial meshes on the stability and the conditioning of fully discrete approximations of a parabolic equation using a general finite element discretization in space with explicit or implicit marching in time. Based on the new mesh dependent bounds on extreme eigenvalues of general finite element systems defined for simplicial meshes, we derive a new time step size condition for the explicit time integration schemes presented, which provides more precise dependence not only on mesh size but also on mesh shape. For the implicit time integration schemes, some explicit mesh-dependent estimates of the spectral condition number of the resulting linear systems are also established. Our results provide guidance to the studies of numerical stability for parabolic problems when using spatially unstructured adaptive and/or possibly anisotropic meshes.
引用
收藏
页码:37 / 64
页数:28
相关论文
共 50 条
  • [41] On the condition number of the finite element method for the Laplace-Beltrami operator
    Nguemfouo, Marcial
    Ndjinga, Michael
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 59 - 86
  • [42] Postprocessing the finite element method for semilinear parabolic problems
    Yan, Yubin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1681 - 1702
  • [43] Discontinuous Finite Volume Element Method for Parabolic Problems
    Bi, Chunjia
    Geng, Jiaqiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) : 367 - 383
  • [44] A Posteriori Error Estimates for Exponential Midpoint Integrator Finite Element Method for Parabolic Equations
    Hu, Xianfa
    Wang, Wansheng
    Fang, Yonglei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5849 - 5862
  • [45] SPARSE INITIAL DATA IDENTIFICATION FOR PARABOLIC PDE AND ITS FINITE ELEMENT APPROXIMATIONS
    Casas, Eduardo
    Vexler, Boris
    Zuazua, Enrique
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (03) : 377 - 399
  • [46] Two-grid finite volume element methods for semilinear parabolic problems
    Chen, Chuanjun
    Liu, Wei
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) : 10 - 18
  • [47] Nonlocal convection-diffusion problems and finite element approximations
    Tian, Hao
    Ju, Lili
    Du, Qiang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 289 : 60 - 78
  • [48] A New Mesh Smoothing Method to Improve the Condition Number of Submatrices of Coefficient Matrix in Edge Finite Element Method
    Noguchi, So
    Takada, Atsushi
    Nobuyama, Fumiaki
    Miwa, Masahiko
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (05) : 1705 - 1708
  • [49] A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (05) : 688 - 704
  • [50] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Lu, Zuliang
    Liu, Hongyan
    Hou, Chunjuan
    Cao, Longzhou
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 17