Plasma atomic layer etching using conventional plasma equipment

被引:158
作者
Agarwal, Ankur [2 ]
Kushner, Mark J. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2009年 / 27卷 / 01期
关键词
elemental semiconductors; passivation; silicon; sputter etching; INDUCTIVELY-COUPLED PLASMAS; CHEMICAL-VAPOR-DEPOSITION; AR NEUTRAL BEAM; CHLORINE ADSORPTION; WAVE-FORMS; SILICON; FLUOROCARBON; SI; IRRADIATION; DISCHARGES;
D O I
10.1116/1.3021361
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
[31]   New frontiers of atomic layer etching [J].
Sherpa, Sonam D. ;
Ranjan, Alok .
ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING VII, 2018, 10589
[32]   Predicting synergy in atomic layer etching [J].
Kanarik, Keren J. ;
Tan, Samantha ;
Yang, Wenbing ;
Kim, Taeseung ;
Lill, Thorsten ;
Kabansky, Alexander ;
Hudson, Eric A. ;
Ohba, Tomihito ;
Nojiri, Kazuo ;
Yu, Jengyi ;
Wise, Rich ;
Berry, Ivan L. ;
Pan, Yang ;
Marks, Jeffrey ;
Gottscho, Richard A. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (05)
[33]   SIMPLE - A technique of silicon micromachining using plasma etching [J].
Li, YX ;
French, PJ ;
Sarro, PM ;
Wolffenbuttel, RF .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 57 (03) :223-232
[34]   Cryo atomic layer etching of SiO2 by C4F8 physisorption followed by Ar plasma [J].
Antoun, G. ;
Lefaucheux, P. ;
Tillocher, T. ;
Dussart, R. ;
Yamazaki, K. ;
Yatsuda, K. ;
Faguet, J. ;
Maekawa, K. .
APPLIED PHYSICS LETTERS, 2019, 115 (15)
[35]   Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane [J].
Weeks, Stephen ;
Nowling, Greg ;
Fuchigami, Nobi ;
Bowes, Michael ;
Littau, Karl .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01)
[36]   Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition [J].
Becker, Martin ;
Sierka, Marek .
MATERIALS, 2019, 12 (16)
[37]   Etching characterization of shaped hole high density plasma for using MEMS devices [J].
Park, WJ ;
Kim, YT ;
Kim, JH ;
Suh, SJ ;
Yoon, DH .
SURFACE & COATINGS TECHNOLOGY, 2005, 193 (1-3) :314-318
[38]   Mechanism of SiN etching rate fluctuation in atomic layer etching [J].
Hirata, Akiko ;
Fukasawa, Masanaga ;
Kugimiya, Katsuhisa ;
Nagaoka, Kojiro ;
Karahashi, Kazuhiro ;
Hamaguchi, Satoshi ;
Iwamoto, Hayato .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06)
[39]   Plasma-Enhanced Atomic Layer Deposition of TaCx Films Using Tris(neopentyl) Tantalum Dichloride and H2 Plasma [J].
Kim, Tae-Ho ;
Eom, Tae-Kwang ;
Kim, Soo-Hyun ;
Kang, Dae-Hwan ;
Kim, Hoon ;
Yu, Sangho ;
Lim, Jin Mook .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (08) :D89-D93
[40]   Plasma etching: From micro- to nanoelectronics [J].
Shamiryan, D. ;
Paraschiv, V. ;
Boullart, W. ;
Baklanov, M. R. .
HIGH ENERGY CHEMISTRY, 2009, 43 (03) :204-212