Plasma atomic layer etching using conventional plasma equipment

被引:158
作者
Agarwal, Ankur [2 ]
Kushner, Mark J. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2009年 / 27卷 / 01期
关键词
elemental semiconductors; passivation; silicon; sputter etching; INDUCTIVELY-COUPLED PLASMAS; CHEMICAL-VAPOR-DEPOSITION; AR NEUTRAL BEAM; CHLORINE ADSORPTION; WAVE-FORMS; SILICON; FLUOROCARBON; SI; IRRADIATION; DISCHARGES;
D O I
10.1116/1.3021361
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
[21]   PFC-Free Dry Etching Method for Si Using Narrow-Gap VHF Plasma at Subatmospheric Pressure [J].
Ohmi, Hiromasa ;
Kishimoto, Kazuya ;
Kakiuchi, Hiroaki ;
Yasutake, Kiyoshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) :D85-D89
[22]   Sidewall damage in plasma etching of Si/SiGe heterostructures [J].
Ding, R. ;
Klein, L. J. ;
Friesen, Mark G. ;
Eriksson, M. A. ;
Wendt, A. E. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (04) :836-843
[23]   Atomic layer etching of SiO2 for surface cleaning using ammonium fluorosilicate with CF4/NH3 plasma [J].
Cho, Yegeun ;
Kim, Yongjae ;
Kim, Sunjung ;
Chae, Heeyeop .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (02)
[24]   In Situ Monitoring of Surface Reactions during Atomic Layer Etching of Silicon Nitride Using Hydrogen Plasma and Fluorine Radicals [J].
Nakane, Kazuya ;
Vervuurt, Rene H. J. ;
Tsutsumi, Takayoshi ;
Kobayashi, Nobuyoshi ;
Hori, Masaru .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) :37263-37269
[25]   Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2 [J].
Gasvoda, Ryan J. ;
van de Steeg, Alex W. ;
Bhowmick, Ranadeep ;
Hudson, Eric A. ;
Agarwal, Sumit .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (36) :31067-31075
[26]   Etch-stop mechanisms in plasma-enhanced atomic layer etching of silicon nitride: A molecular dynamics study [J].
Tercero, Jomar U. ;
Isobe, Michiro ;
Karahashi, Kazuhiro ;
Vasquez, Magdaleno R. ;
Hamaguchi, Satoshi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (05)
[27]   Feasibility of atomic layer etching of polymer material based on sequential O2 exposure and Ar low-pressure plasma-etching [J].
Vogli, Evelina ;
Metzler, Dominik ;
Oehrlein, Gottlieb S. .
APPLIED PHYSICS LETTERS, 2013, 102 (25)
[28]   Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma [J].
Liu, Zecheng ;
Ishikawa, Kenji ;
Imamura, Masato ;
Tsutsumi, Takayoshi ;
Kondo, Hiroki ;
Oda, Osamu ;
Sekine, Makoto ;
Hori, Masaru .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (06)
[29]   Impact of Atomic Layer Etching on Process Tool Design [J].
Cooke, M. J. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (06) :N5001-N5004
[30]   Plasma enhanced atomic layer deposition of magnesium oxide as a passivation layer for enhanced photoluminescence of ZnO nanowires [J].
Song, Jeong-Gyu ;
Park, Jusang ;
Yoon, Jaehong ;
Woo, Hwangje ;
Ko, Kyungyong ;
Lee, Taeyoon ;
Hwang, Sung-Hwan ;
Myoung, Jae-Min ;
Kim, Keewon ;
Jang, Youngman ;
Kim, Kwangseok ;
Kim, Hyungjun .
JOURNAL OF LUMINESCENCE, 2014, 145 :307-311