Profile-Based LC-MS Data Alignment-A Bayesian Approach

被引:6
作者
Tsai, Tsung-Heng [1 ,2 ]
Tadesse, Mahlet G. [3 ]
Wang, Yue [4 ]
Ressom, Habtom W. [2 ]
机构
[1] Virginia Tech, Dept Elect & Comp Engn, Washington, DC 20057 USA
[2] Georgetown Univ, Lombardi Comprehens Canc Ctr, Dept Oncol, Washington, DC 20057 USA
[3] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[4] Virginia Tech, Dept Elect & Comp Engn, Arlington, VA 22203 USA
关键词
Alignment; Bayesian inference; block Metropolis-Hastings algorithm; liquid chromatography-mass spectrometry (LC-MS); Markov chain Monte Carlo (MCMC); stochastic search variable selection (SSVS); MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; BIOMARKER DISCOVERY; PROTEOMICS; PLATFORM;
D O I
10.1109/TCBB.2013.25
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Bayesian alignment model (BAM) is proposed for alignment of liquid chromatography-mass spectrometry (LC-MS) data. BAM belongs to the category of profile-based approaches, which are composed of two major components: a prototype function and a set of mapping functions. Appropriate estimation of these functions is crucial for good alignment results. BAM uses Markov chain Monte Carlo (MCMC) methods to draw inference on the model parameters and improves on existing MCMC-based alignment methods through 1) the implementation of an efficient MCMC sampler and 2) an adaptive selection of knots. A block Metropolis-Hastings algorithm that mitigates the problem of the MCMC sampler getting stuck at local modes of the posterior distribution is used for the update of the mapping function coefficients. In addition, a stochastic search variable selection (SSVS) methodology is used to determine the number and positions of knots. We applied BAM to a simulated data set, an LC-MS proteomic data set, and two LC-MS metabolomic data sets, and compared its performance with the Bayesian hierarchical curve registration (BHCR) model, the dynamic time-warping (DTW) model, and the continuous profile model (CPM). The advantage of applying appropriate profile-based retention time correction prior to performing a feature-based approach is also demonstrated through the metabolomic data sets.
引用
收藏
页码:494 / 503
页数:10
相关论文
共 26 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Semi-supervised LC/MS alignment for differential proteomics [J].
Fischer, Bernd ;
Grossmann, Jonas ;
Roth, Volker ;
Gruissem, Wilhelm ;
Baginsky, Sacha ;
Buhmann, Joachim M. .
BIOINFORMATICS, 2006, 22 (14) :E132-E140
[3]   VARIABLE SELECTION VIA GIBBS SAMPLING [J].
GEORGE, EI ;
MCCULLOCH, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :881-889
[4]   Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J].
Green, PJ .
BIOMETRIKA, 1995, 82 (04) :711-732
[5]   PEPPeR, a platform for experimental proteomic pattern recognition [J].
Jaffe, Jacob D. ;
Mani, D. R. ;
Leptos, Kyriacos C. ;
Church, George M. ;
Gillette, Michael A. ;
Carr, Steven A. .
MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) :1927-1941
[6]   Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline [J].
Jaitly, Navdeep ;
Monroe, Matthew E. ;
Petyuk, Vladislav A. ;
Clauss, Therese R. W. ;
Adkins, Joshua N. ;
Smith, Richard D. .
ANALYTICAL CHEMISTRY, 2006, 78 (21) :7397-7409
[7]   LIQUID CHROMATOGRAPHY MASS SPECTROMETRY-BASED PROTEOMICS: BIOLOGICAL AND TECHNOLOGICAL ASPECTS [J].
Karpievitch, Yuliya V. ;
Polpitiya, Ashoka D. ;
Anderson, Gordon A. ;
Smith, Richard D. ;
Dabney, Alan R. .
ANNALS OF APPLIED STATISTICS, 2010, 4 (04) :1797-1823
[8]   A geometric approach for the alignment of liquid chromatography -: mass spectrometry data [J].
Lange, Eva ;
Groepl, Clemens ;
Schulz-Trieglaff, Ole ;
Leinenbach, Andreas ;
Huber, Christian ;
Reinert, Knut .
BIOINFORMATICS, 2007, 23 (13) :I273-I281
[9]   Critical assessment of alignment procedures for LC- MS proteomics and metabolomics measurements [J].
Lange, Eva ;
Tautenhahn, Ralf ;
Neumann, Steffen ;
Groepl, Clemens .
BMC BIOINFORMATICS, 2008, 9 (1)
[10]  
Listgarten J., 2007, ADV NEURAL INFORM PR, P905