Equivariant vector bundles and logarithmic connections on toric varieties

被引:0
|
作者
Biswas, Indranil [1 ]
Munoz, Vicente [2 ]
Sanchez, Jonathan [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Univ Complutense Madrid, Fac Ciencias Matemat, E-28040 Madrid, Spain
关键词
Toric variety; Equivariant bundle; Logarithmic connection; G-pair;
D O I
10.1016/j.jalgebra.2013.02.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth complete complex toric variety such that the boundary is a simple normal crossing divisor, and let E be a holomorphic vector bundle on X. We prove that the following three statements are equivalent: The holomorphic vector bundle E admits an equivariant structure. The holomorphic vector bundle E admits an integrable logarithmic connection singular over D. The holomorphic vector bundle E admits a logarithmic connection singular over D. We show that an equivariant vector bundle on X has a tautological integrable logarithmic connection singular over D. This is used in computing the Chern classes of the equivariant vector bundles on X. We also prove a version of the above result for holomorphic vector bundles on log parallelizable G-pairs (X, D), where G is a simply connected complex affine algebraic group. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 50 条
  • [1] EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 280 (02) : 315 - 325
  • [2] STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2020, 25 : 1787 - 1833
  • [3] Seshadri constants of equivariant vector bundles on toric varieties
    Dasgupta, Jyoti
    Khan, Bivas
    Subramaniam, Aditya
    JOURNAL OF ALGEBRA, 2022, 595 : 38 - 68
  • [4] ERRATUM FOR "STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES"
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2021, 26 : 1271 - 1274
  • [5] Vector bundles on toric varieties
    Gharib, Saman
    Karu, Kalle
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (3-4) : 209 - 212
  • [6] Equivariant Abelian principal bundles on nonsingular toric varieties
    Dey, Arijit
    Poddar, Mainak
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05): : 471 - 487
  • [7] TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES
    INDRANIL BISWAS
    ARIJIT DEY
    MAINAK PODDAR
    Transformation Groups, 2020, 25 : 1009 - 1035
  • [8] TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    TRANSFORMATION GROUPS, 2020, 25 (04) : 1009 - 1035
  • [9] A classification of equivariant principal bundles over nonsingular toric varieties
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
  • [10] EQUIVARIANT VECTOR BUNDLES ON T-VARIETIES
    Ilten, Nathan
    Suess, Hendrik
    TRANSFORMATION GROUPS, 2015, 20 (04) : 1043 - 1073