Methylation of Polycomb Target Genes in Intestinal Cancer Is Mediated by Inflammation

被引:160
作者
Hahn, Maria A. [1 ]
Hahn, Torsten [1 ]
Lee, Dong-Hyun [1 ]
Esworthy, R. Steven [2 ]
Kim, Byung-wook [2 ]
Riggs, Arthur D. [1 ]
Chu, Fong-Fong [2 ]
Pfeifer, Gerd P. [1 ]
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Div Biol, Duarte, CA 91010 USA
[2] City Hope Natl Med Ctr, Beckman Res Inst, Dept Radiat Biol, Duarte, CA 91010 USA
关键词
D O I
10.1158/0008-5472.CAN-08-1957
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Epigenetic changes are strongly associated with cancer development. DNA hypermethylation is associated with gene silencing and is often observed in CpG islands. Recently, it was suggested that aberrant CpG island methylation in tumors is directed by Polycomb (PcG) proteins. However, specific mechanisms responsible for methylation of PcG target genes in cancer are not known. Chronic infection and inflammation contribute to up to 25% of all cancers worldwide. Using glutathione peroxidase, Gpx1 and Gpx2, double knockout (Gpx1/2-KO) mice as a model of inflammatory bowel disease predisposing to intestinal cancer, we analyzed genome-Aide DNA methylation in the mouse ileum during chronic inflammation, aging, and cancer. We found that inflammation leads to aberrant DNA methylation in PcG target genes, with 70% of the similar to 250 genes methylated in the inflamed tissue being PcG targets in embryonic stem cells and 59% of the methylated genes being marked by H3K27 trimethylation in the ileum of adult wild-type mice. Acquisition of DNA methylation at CpG islands in the ileum of Gpx1/2-KO mice frequently correlates with loss of H3K27 trimethylation at the same loci. Inflammation-associated DNA methylation occurs preferentially in tissue-specific silent genes and, importantly, is much more frequently represented in tumors than is age-dependent DNA methylation. Sixty percent of aberrant methylation found in tumors is also present in the inflamed tissue. In summary, inflammation creates a signature of aberrant DNA methylation, which is observed later in the malignant tissue and is directed by the PcG complex. [Cancer Res 2008;68(24):10280-9]
引用
收藏
页码:10280 / 10289
页数:10
相关论文
共 48 条
[1]   Inflammation and cancer: How hot is the link? [J].
Aggarwal, Bharat B. ;
Shishodia, Shishir ;
Sandur, Santosh K. ;
Pandey, Manoj K. ;
Sethi, Gautam .
BIOCHEMICAL PHARMACOLOGY, 2006, 72 (11) :1605-1621
[2]  
Ahuja N, 1998, CANCER RES, V58, P5489
[3]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[4]   Polycomb complexes repress developmental regulators in murine embryonic stem cells [J].
Boyer, LA ;
Plath, K ;
Zeitlinger, J ;
Brambrink, T ;
Medeiros, LA ;
Lee, TI ;
Levine, SS ;
Wernig, M ;
Tajonar, A ;
Ray, MK ;
Bell, GW ;
Otte, AP ;
Vidal, M ;
Gifford, DK ;
Young, RA ;
Jaenisch, R .
NATURE, 2006, 441 (7091) :349-353
[5]   Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions [J].
Bracken, AP ;
Dietrich, N ;
Pasini, D ;
Hansen, KH ;
Helin, K .
GENES & DEVELOPMENT, 2006, 20 (09) :1123-1136
[6]   Bmi1 controls tumor development in an ink4a/Arf-independent manner in a mouse model for glioma [J].
Bruggeman, Sophia W. M. ;
Hulsman, Danielle ;
Tanger, Ellen ;
Buckle, Tessa ;
Blom, Marleen ;
Zevenhoven, John ;
van Tellingen, Olaf ;
van Lohuizen, Maarten .
CANCER CELL, 2007, 12 (04) :328-341
[7]   SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex [J].
Cao, R ;
Zhang, Y .
MOLECULAR CELL, 2004, 15 (01) :57-67
[8]   Role of histone H3 lysine 27 methylation in polycomb-group silencing [J].
Cao, R ;
Wang, LJ ;
Wang, HB ;
Xia, L ;
Erdjument-Bromage, H ;
Tempst, P ;
Jones, RS ;
Zhang, Y .
SCIENCE, 2002, 298 (5595) :1039-1043
[9]   Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes [J].
Chu, FF ;
Esworthy, RS ;
Chu, PG ;
Longmate, JA ;
Huycke, MM ;
Wilczynski, S ;
Doroshow, JH .
CANCER RESEARCH, 2004, 64 (03) :962-968
[10]   Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites [J].
Czermin, B ;
Melfi, R ;
McCabe, D ;
Seitz, V ;
Imhof, A ;
Pirrotta, V .
CELL, 2002, 111 (02) :185-196