Bandgap tunable CdS:O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells

被引:38
作者
Ou, Chizhu [1 ]
Shen, Kai [1 ]
Li, Zhiqiang [2 ]
Zhu, Hongbing [1 ]
Huang, Tailang [1 ]
Mai, Yaohua [1 ]
机构
[1] Jinan Univ, Inst New Energy Technol, Coll Informat Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China
[2] Hebei Univ, Inst Photovolta, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Sb2Se3; CdS:O; Band alignment; Electron buffer layer; Solar cell; DEFECT STATES; OFFSET;
D O I
10.1016/j.solmat.2019.01.043
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony selenide (Sb2Se3) is a promising low-cost and low-toxicity photovoltaic material. The electron buffer layer is of great significance for superstrate Sb2Se3 thin film solar cells. Herein, high-performance Sb2Se3 solar cells were fabricated by using sputtered, bandgap-tunable oxygenated cadmium sulfide (CdS:O) as a novel class of electron buffer layers. The optical transparency and energy band levels of CdS:O buffers were precisely adjusted by controlling the oxygen content in CdS:O layers. With the incorporation of an optimized wide band-gap CdS:O electron buffer layer, the device parameters J(SC), V-OC and FF were all improved. An efficiency of as high as 6.29% was achieved. It's found that, besides the reduced light absorption in the CdS:O layer, the high-quality CdS:O/Sb2Se3 junction played a vital role in the efficiency enhancement. The optimization of interfacial band alignment and defects passivation by atomic oxygen both contribute to the improved quality of CdS:O/Sb2Se3 heterojunction. This study demonstrates that the sputtered CdS:O is a promising electron buffer layer for preparation of high-efficiency and large-area Sb2Se3 thin film solar cells.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [1] Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
    Wen, Xixing
    He, Yisu
    Chen, Chao
    Liu, Xinsheng
    Wang, Liang
    Yang, Bo
    Leng, Meiying
    Song, Huaibing
    Zeng, Kai
    Li, Dengbing
    Li, Kanghua
    Gao, Liang
    Tang, Jiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 74 - 81
  • [2] Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
    Tang, Rong
    Chen, Xing-Ye
    Liang, Guang-Xing
    Su, Zheng-Hua
    Luo, Jing-ting
    Fan, Ping
    SURFACE & COATINGS TECHNOLOGY, 2019, 360 : 68 - 72
  • [3] Interfacial engineering of oxygenated chemical bath-deposited CdS window layer for highly efficient Sb2Se3 thin-film solar cells
    Guo, L.
    Zhang, B.
    Li, S.
    Montgomery, A.
    Li, L.
    Xing, G.
    Zhang, Q.
    Qian, X.
    Yan, F.
    MATERIALS TODAY PHYSICS, 2019, 10
  • [4] Improved performances in Sb2Se3 solar cells based on CdS buffered TiO2 electron transport layer
    Sun, Shuo
    Zhang, Siyu
    Han, Yuanyuan
    Tan, Haidong
    Wen, Jian
    Liu, Xingyun
    Sun, Yuxia
    Liu, Hongri
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 109 (01) : 182 - 191
  • [5] Improved performances in Sb2Se3 solar cells based on CdS buffered TiO2 electron transport layer
    Shuo Sun
    Siyu Zhang
    Yuanyuan Han
    Haidong Tan
    Jian Wen
    Xingyun Liu
    Yuxia Sun
    Hongri Liu
    Journal of Sol-Gel Science and Technology, 2024, 109 : 182 - 191
  • [6] Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells
    Shen, Kai
    Ou, Chizhu
    Huang, Tailang
    Zhu, Hongbing
    Li, Jianjun
    Li, Zhiqiang
    Mai, Yaohua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 : 58 - 65
  • [7] Optical loss analysis of Sb2S3 and Sb2Se3 thin film solar cells: A Quantitative Assessment
    Hajjiah, Ali
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [8] Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells
    Cao Yu
    Jiang Jia-Hao
    Liu Chao-Ping
    Ling Tong
    Meng Dan
    Zhou Jing
    Liu Huan
    Wang Jun-Yao
    ACTA PHYSICA SINICA, 2021, 70 (12)
  • [9] Simulation Analysis of Sb2Se3 Narrow Bandgap Hole Transport Layer in MAPbI3 Perovskite Solar Cells
    Wu, Jing
    Zhao, Zhengyang
    Zhao, Zimeng
    Zhang, Min
    Bi, Yuying
    Li, Xibin
    Zhang, Linrui
    JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (05) : 3910 - 3923
  • [10] Amorphous Zn(O,Se) buffer layer for Cu(In,Ga)Se2thin film solar cells
    Abdalla, Akram
    Danilson, Mati
    Oueslati, Souhaib
    Pilvet, Maris
    Bereznev, Sergei
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 132