Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators

被引:32
作者
Ferreira, M. [1 ,2 ]
Vieira, N. [2 ]
机构
[1] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
关键词
Time fractional diffusion-wave operator; Time fractional parabolic Dirac operator; Fundamental solutions; Caputo fractional derivative; Fractional moments; DEPENDENT OPERATORS; WRIGHT FUNCTIONS;
D O I
10.1016/j.jmaa.2016.08.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order beta is an element of]0, 2]. Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order gamma > 0 are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 353
页数:25
相关论文
共 34 条
  • [1] Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
  • [2] [Anonymous], THEORY APPL ANAL MET
  • [3] [Anonymous], 2009, DISSERTACAO MESTRADO
  • [4] [Anonymous], 1997, MATH METHODS PRACTIC
  • [5] [Anonymous], 2006, Journal of the Electrochemical Society
  • [6] [Anonymous], P EDINB MAT IN PRESS
  • [7] [Anonymous], REND FIS ACC LINCE 9
  • [8] Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains
    Cerejeiras, P
    Kähler, U
    Sommen, F
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (14) : 1715 - 1724
  • [9] HODGE TYPE DECOMPOSITION IN VARIABLE EXPONENT SPACES FOR THE TIME-DEPENDENT OPERATORS: THE SCHRODINGER CASE
    Cerejeiras, P.
    Kaehler, U.
    Rodrigues, M. M.
    Vieira, N.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2253 - 2272
  • [10] Delanghe R., 1992, MATH ITS APPL, V53