Generalized Bose-Fermi mapping and strong coupling ansatz wavefunction for one dimensional strongly interacting spinor quantum gases

被引:4
作者
Yang, Li [1 ,2 ,3 ]
Alam, Shah Saad [1 ,2 ]
Pu, Han [1 ,2 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA
[2] Rice Univ, Rice Ctr Quantum Mat, Houston, TX 77251 USA
[3] 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
关键词
Bose-Fermi mapping; spinor quantum gas; one dimensional many-body system; dynamical fermionization; BETHE-ANSATZ; FRACTIONAL STATISTICS; DUALITY; SYSTEMS; BOSONS; ATOMS;
D O I
10.1088/1751-8121/aca302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum many-body systems in one dimension (1D) exhibit some peculiar properties. In this article, we review some of our work on strongly interacting 1D spinor quantum gas. First, we discuss a generalized Bose-Fermi mapping that maps the charge degrees of freedom to a spinless Fermi gas and the spin degrees of freedom to a spin chain model. This also maps the strongly interacting system into a weakly interacting one, which is amenable for perturbative calculations. Next, based on this mapping, we construct an ansatz wavefunction for the strongly interacting system, using which many physical quantities can be conveniently calculated. We showcase the usage of this ansatz wavefunction by considering the collective excitations and quench dynamics of a harmonically trapped system.
引用
收藏
页数:23
相关论文
共 94 条
[1]   Dynamical Fermionization in One-Dimensional Spinor Quantum Gases [J].
Alam, Shah Saad ;
Skaras, Timothy ;
Yang, Li ;
Pu, Han .
PHYSICAL REVIEW LETTERS, 2021, 127 (02)
[2]   Local density approximation for a perturbative equation of state [J].
Astrakharchik, GE .
PHYSICAL REVIEW A, 2005, 72 (06)
[3]   Exact solution for SU(2)-symmetry-breaking bosonic mixtures at strong interactions [J].
Aupetit-Diallo, Gianni ;
Pecci, Giovanni ;
Pignol, Charlotte ;
Hebert, Frederic ;
Minguzzi, Anna ;
Albert, Mathias ;
Vignolo, Patrizia .
PHYSICAL REVIEW A, 2022, 106 (03)
[4]   Generalized exclusion statistics and degenerate signature of strongly interacting anyons [J].
Batchelor, M. T. ;
Guan, X. -W. .
PHYSICAL REVIEW B, 2006, 74 (19)
[5]   One-dimensional interacting anyon gas: Low-energy properties and haldane exclusion statistics [J].
Batchelor, M. T. ;
Guan, X. -W. ;
Oelkers, N. .
PHYSICAL REVIEW LETTERS, 2006, 96 (21)
[6]   Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas [J].
Batchelor, M. T. ;
Guan, X. W. .
LASER PHYSICS LETTERS, 2007, 4 (01) :77-83
[7]   The Bethe ansatz for 1D interacting anyons [J].
Batchelor, M. T. ;
Guan, X-W ;
He, J-S .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[8]   Correlation functions of one-dimensional anyonic fluids [J].
Calabrese, Pasquale ;
Mintchev, Mihail .
PHYSICAL REVIEW B, 2007, 75 (23)
[9]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[10]   Low-temperature crossover in the momentum distribution of cold atomic gases in one dimension [J].
Cheianov, VV ;
Smith, H ;
Zvonarev, MB .
PHYSICAL REVIEW A, 2005, 71 (03)