Fault-free cycles in folded hypercubes with more faulty elements

被引:47
作者
Fu, Jung-Sheng [1 ]
机构
[1] Natl United Univ, Dept Elect Engn, Miaoli, Taiwan
关键词
Hypercube; Fault tolerant embedding; Folded hypercube; Interconnection network;
D O I
10.1016/j.ipl.2008.05.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let FFv (respectively, FFe) be the set of faulty vertices (respectively, faulty edges) in an n-dimensional folded hypercube FQ(n). In this paper, we show that FQ(n) - FFv - FFe contains a fault-free cycle with length at least 2(n) - 2 vertical bar FFv vertical bar if vertical bar FFe vertical bar + vertical bar FFv vertical bar <= 2n - 4 and vertical bar FFe vertical bar <= n - 1, where n >= 3. Our result improves the previously known result of [S.-Y. Hsieh, A note on cycle embedding in folded hypercubes with faulty elements, Information Processing Letters (2008), in press, doi:10.1016/j.ipl.2008.04.003] where vertical bar FFe vertical bar + vertical bar FFv vertical bar <= n - 1 and n >= 4. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 263
页数:3
相关论文
共 15 条
[1]   PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES [J].
ELAMAWY, A ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) :31-42
[2]   The bipanconnectivity and m-panconnectivity of the folded hypercube [J].
Fang, Jywe-Fei .
THEORETICAL COMPUTER SCIENCE, 2007, 385 (1-3) :286-300
[3]   EDGE FAULT TOLERANCE IN GRAPHS [J].
HARARY, F ;
HAYES, JP .
NETWORKS, 1993, 23 (02) :135-142
[5]   Some edge-fault-tolerant properties of the folded hypercube [J].
Hsieh, Sun-Yuan .
NETWORKS, 2008, 51 (02) :92-101
[6]   Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes [J].
Hsieh, Sun-Yuan ;
Kuo, Che-Nan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (07) :1040-1044
[7]   Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges [J].
Hsieh, SY .
PARALLEL COMPUTING, 2006, 32 (01) :84-91
[8]   Fault-free Hamiltonian cycles in faulty arrangement graphs [J].
Hsieh, SY ;
Chen, GH ;
Ho, CW .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (03) :223-237
[9]   w-Rabin numbers and strong w-rabin numbers of folded hypercubes [J].
Lai, Cheng-Nan ;
Chen, Gen-Huey .
NETWORKS, 2008, 51 (03) :171-177
[10]   Strong Rabin numbers of folded hypercubes [J].
Lai, CN ;
Chen, GH .
THEORETICAL COMPUTER SCIENCE, 2005, 341 (1-3) :196-215