Ultrametric subsets with large Hausdorff dimension

被引:15
作者
Mendel, Manor [1 ,3 ,4 ]
Naor, Assaf [2 ]
机构
[1] Open Univ Israel, Dept Math & Comp Sci, IL-43107 Raanana, Israel
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Microsoft Res, Mountain View, CA USA
[4] Univ Washington, Seattle, WA 98195 USA
关键词
SPACES; SERVER; BOUNDS; SETS;
D O I
10.1007/s00222-012-0402-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for every epsilon a(0,1), every compact metric space (X,d) has a compact subset SaS dagger X that embeds into an ultrametric space with distortion O(1/epsilon), and dim(H) (S) >= (1 - epsilon) dim(H) (X), where dim (H) (.) denotes Hausdorff dimension. The above O(1/epsilon) distortion estimate is shown to be sharp via a construction based on sequences of expander graphs.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 40 条
[31]  
Sagan H., 1994, Space-Filling Curves
[32]   Two observations regarding embedding subsets of Euclidean spaces in normed spaces [J].
Schechtman, G .
ADVANCES IN MATHEMATICS, 2006, 200 (01) :125-135
[33]   Distance Oracles for Sparse Graphs [J].
Sommer, Christian ;
Verbin, Elad ;
Yu, Wei .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :703-712
[34]   REGULARITY OF GAUSSIAN-PROCESSES [J].
TALAGRAND, M .
ACTA MATHEMATICA, 1987, 159 (1-2) :99-149
[35]  
Talagrand M, 2011, MODERN METH IN PRESS
[36]   Approximate distance oracles [J].
Thorup, M ;
Zwick, U .
JOURNAL OF THE ACM, 2005, 52 (01) :1-24
[37]   Transfinite Hausdorff dimension [J].
Urbanski, Mariusz .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (17) :2762-2771
[38]  
VESTFRID IA, 1979, DOKL AKAD NAUK SSSR+, V246, P528
[39]  
VITUSHKIN AG, 1963, DOKL AKAD NAUK SSSR+, V151, P1256
[40]  
Wulff-Nilsen C, 2011, PREPRINT