Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonlans in a perturbative framework

被引:19
作者
Bagchi, B
Quesne, C
Roychoudhury, R
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
[2] Free Univ Brussels, B-1050 Brussels, Belgium
[3] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 06期
关键词
D O I
10.1088/0305-4470/39/6/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a systematic algorithm for constructing a whole class of Hermitian position-dependent-mass Hamiltonians which, to lowest order of perturbation theory, allow a description in terms of PT-symmetric Hamiltonians. The method is applied to the Hermitian analogue of the PT-symmetric cubic anharmonic oscillator. A new example is provided by a Hamiltonian (approximately) equivalent to a PT-symmetric extension of the one-parameter trigonometric Poschl-Teller potential.
引用
收藏
页码:L127 / L134
页数:8
相关论文
共 21 条
[1]   Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 290 (1-2) :19-22
[2]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[3]   Pseudo-Hermiticity and some consequences of a generalized quantum condition [J].
Bagchi, B ;
Quesne, C ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (40) :L647-L652
[4]   A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
MODERN PHYSICS LETTERS A, 2004, 19 (37) :2765-2775
[5]   The C operator in PT-symmetric quantum theories [J].
Bender, CM ;
Brod, J ;
Refig, A ;
Reuter, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43) :10139-10165
[6]   Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001 [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW D, 2004, 70 (02) :025001-1
[7]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]  
BENDER CM, 2005, PT SYMMETRIC VERSUS
[10]   Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :5679-5704