Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients

被引:20
作者
Gupta, R. K. [2 ]
Bansal, Anupma [1 ]
机构
[1] DAV Coll Women, Dept Math, Ferozepur Cantt 152001, India
[2] Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
关键词
Generalized Bretherton equation; Lie classical method; Exact solutions; MULTIPLE-SOLITON SOLUTIONS; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; F-EXPANSION METHOD; TANH METHOD;
D O I
10.1007/s11071-012-0637-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we apply Lie-group formalism to the generalized Bretherton equation with variable coefficients u (tt) +alpha(t)u (xx) +beta(t)u (xxxx) +delta(t)u (m) +theta(t)u (n) =0, to investigate the symmetries. We derive the infinitesimals and the admissible forms of the coefficients that admit the classical symmetry group. The ordinary differential equations deduced from the optimal system of subalgebras are further studied and some exact solutions are obtained.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 39 条
[1]   The extended F-expansion method and its application for a class of nonlinear evolution equations [J].
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :95-104
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[4]  
[Anonymous], SOLITIONS INVERSE SC
[5]   New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method [J].
Bekir, Ahmet .
PHYSICA SCRIPTA, 2008, 77 (04)
[6]  
Bluman G. W., 1974, Appl. Math. Sci., V13
[7]   RESONANT INTERACTIONS BETWEEN WAVES - THE CASE OF DISCRETE OSCILLATIONS [J].
BRETHERTON, FP .
JOURNAL OF FLUID MECHANICS, 1964, 20 (03) :457-479
[8]   Jacobian elliptic function method for nonlinear differential-difference equations [J].
Dai, CQ ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :1042-1047
[9]  
Dodd R. K., 1982, Solitons and Nonlinear Wave Equations
[10]   New exact travelling wave solutions using modified extended tanh-function method [J].
El-Wakil, S. A. ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :840-852