p-ADIC FAMILIES OF MODULAR FORMS [after Hida, Coleman, and Mazur]

被引:0
作者
Emerton, Matthew [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
GALOIS REPRESENTATIONS; INTERPOLATION; EIGENVALUES; CONGRUENCES; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the theory of p-adic families of modular Hecke eigenforms, as developed by Hida, Coleman and Mazur, and others. We also describe the relationships (both known and conjectured) between this theory and the theory of two-dimensional p-adic representations of the absolute Galois group of Q.
引用
收藏
页码:31 / +
页数:32
相关论文
共 45 条
[1]  
[Anonymous], 1971, PUBLICATIONS MATH SO
[2]  
[Anonymous], 1958, J. Math. Soc. Japan
[3]  
[Anonymous], 1954, Archiv der Mat., DOI [10.1007/BF01898377, DOI 10.1007/BF01898377]
[4]  
ASH A, 2000, P ADIC DEFORMATIONS
[5]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[6]   On the density of modular points in universal deformation spaces [J].
Böckle, G .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (05) :985-1007
[7]   Companion forms and weight one forms [J].
Buzzard, K ;
Taylor, R .
ANNALS OF MATHEMATICS, 1999, 149 (03) :905-919
[8]  
Buzzard K., 2007, London Math. Soc. Lecture Note Ser., V320, P59
[9]   SOME RESULTS OF ATKIN AND LEHNER [J].
CASSELMAN, W .
MATHEMATISCHE ANNALEN, 1973, 201 (04) :301-314
[10]  
Coleman R., 1998, LONDON MATH SOC LECT, V254, P1