The weight distribution of a class of linear codes from perfect nonlinear functions

被引:115
作者
Yuan, J
Carlet, C
Ding, C
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[2] INRIA, Projet Codes, F-78153 Le Chesnay, France
[3] Univ Paris 08, Paris, France
关键词
difference sets; linear codes; perfect nonlinear functions; planar functions; weight distribution;
D O I
10.1109/TIT.2005.862125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, the weight distribution of a class of linear codes based on perfect nonlinear functions (also called planar functions) is determined. The class of linear codes under study are either optimal or among the best codes known, and have nice applications in cryptography.
引用
收藏
页码:712 / 717
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1998, HDB CODING THEORY
[2]   Linear codes from perfect nonlinear mappings and their secret sharing schemes [J].
Carlet, C ;
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2089-2102
[3]   Highly nonlinear mappings [J].
Carlet, C ;
Ding, CS .
JOURNAL OF COMPLEXITY, 2004, 20 (2-3) :205-244
[4]   Planar Functions and Planes of Lenz-Barlotti Class II [J].
Coulter R.S. ;
Matthews R.W. .
Designs, Codes and Cryptography, 1997, 10 (2) :167-184
[5]   The number of rational points of a class of Artin-Schreier curves [J].
Coulter, RS .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) :397-413
[6]   PLANES OF ORDER N WITH COLLINEATION GROUPS OF ORDER N2 [J].
DEMBOWSKI, P ;
OSTROM, TG .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (03) :239-&
[7]  
DING C, IN PRESS J COMB TH A
[8]   A family of optimal constant-composition codes [J].
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) :3668-3671
[9]  
Lidl R., 1997, Finite Fields
[10]  
NYBERG K, 1991, LECT NOTES COMPUT SC, V547, P378