Noncollapsing in mean-convex mean curvature flow

被引:97
作者
Andrews, Ben [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
CURVES;
D O I
10.2140/gt.2012.16.1413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a direct proof of a noncollapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence.
引用
收藏
页码:1413 / 1418
页数:6
相关论文
共 6 条
[1]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[2]   CURVE SHORTENING MAKES CONVEX CURVES CIRCULAR [J].
GAGE, ME .
INVENTIONES MATHEMATICAE, 1984, 76 (02) :357-364
[3]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[4]  
Sheng WM, 2009, METHODS APPL ANAL, V16, P139
[5]   Starshaped hypersurfaces and the mean curvature flow [J].
Smoczyk, K .
MANUSCRIPTA MATHEMATICA, 1998, 95 (02) :225-236