Surface defects from fractional branes. Part I

被引:5
作者
Ashok, S. K. [1 ]
Billo, M. [2 ,3 ]
Frau, M. [2 ,3 ]
Lerda, A. [3 ,4 ]
Mahato, S. [1 ]
机构
[1] Homi Bhabha Natl Inst HBNI, Inst Math Sci, 4 Cross Rd,CIT Campus, Madras 600113, Tamil Nadu, India
[2] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[3] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[4] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Viale T Michel 11, I-15121 Alessandria, Italy
关键词
D-branes; Extended Supersymmetry; Nonperturbative Effects; Duality in Gauge Field Theories; CONFORMAL BLOCKS;
D O I
10.1007/JHEP07(2020)051
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the Gukov-Witten monodromy defects of supersymmetric Yang-Mills theory can be realized in perturbative string theory by considering an orbifold background of the Kanno-Tachikawa type and placing stacks of fractional D3-branes whose world-volume partially extends along the orbifold directions. In particular, we show that turning on a constant background value for some scalar fields in the closed string twisted sectors induces a non-trivial profile for the gauge field and one of the complex scalars of the world-volume theory, and that this profile exactly matches the singular behavior that one expects for a Gukov-Witten surface defect in the N = 4 super Yang-Mills theory. To keep the presentation as simple as possible, in this work we restrict our analysis to surface defects corresponding to a Z(2) orbifold and defer the study of the most general case to a companion paper.
引用
收藏
页数:32
相关论文
共 41 条
[1]   Affine SL(2) Conformal Blocks from 4d Gauge Theories [J].
Alday, Luis F. ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) :87-114
[2]  
[Anonymous], 2003, Adv. Theor. Math. Phys., DOI [DOI 10.4310/ATMP.2003.V7.N5.A4, 10.4310/ATMP.2003. v7.n5.a4]
[3]  
[Anonymous], 2006, String theory and M-theory: A modern introduction, DOI DOI 10.1017/CBO9780511816086
[4]   ALE MANIFOLDS AND CONFORMAL FIELD-THEORIES [J].
ANSELMI, D ;
BILLO, M ;
FRE, P ;
ZAFFARONI, A ;
GIRARDELLO, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (17) :3007-3057
[5]   Surface operators, dual quivers and contours [J].
Ashok, S. K. ;
Ballav, S. ;
Billo, M. ;
Dell'Aquila, E. ;
Frau, M. ;
Gupta, V ;
John, R. R. ;
Lerda, A. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (03)
[6]  
Ashok SK, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2017)137
[7]  
Ashok SK, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2017)068
[8]  
Ashok S.K., ARXIV 2005 03701
[9]  
Ashok SK, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6866-5
[10]  
Awata H, 2012, ADV THEOR MATH PHYS, V16, P725