A Quality Assuring Multi-armed Bandit Crowdsourcing Mechanism with Incentive Compatible Learning

被引:0
作者
Jain, Shweta [1 ]
Gujar, Sujit [2 ]
Zoeter, Onno [3 ]
Narahari, Y. [1 ]
机构
[1] IISc Bangalore, Bengaluru, India
[2] EPFL Lausanne, Lausanne, Switzerland
[3] XRCE Meylan, Meylan, France
来源
AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS | 2014年
关键词
Mechanism Design; Multi-armed Bandit; Crowdsourcing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a novel multi-armed bandit (MAB) mechanism for the problem of selecting a subset of crowd workers to achieve an assured accuracy for each binary labelling task in a cost optimal way. This problem is challenging because workers have unknown qualities and strategic costs.
引用
收藏
页码:1609 / 1610
页数:2
相关论文
共 2 条
  • [1] [Anonymous], 2010, P 11 ACM C EL COMM E, DOI [DOI 10.1145/1807342.1807349, 10.1145/1807342.1807349]
  • [2] Finite-time analysis of the multiarmed bandit problem
    Auer, P
    Cesa-Bianchi, N
    Fischer, P
    [J]. MACHINE LEARNING, 2002, 47 (2-3) : 235 - 256