Fabrication of dual-wavelength diffractive beam splitters using maskless optical lithography with a digital micromirror device

被引:0
作者
Amako, Jun [1 ]
Shinozaki, Yu [1 ]
机构
[1] Toyo Univ, Grad Sch Sci & Engn, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
来源
OPTICAL MICROLITHOGRAPHY XXIX | 2016年 / 9780卷
关键词
diffractive optical elements; dual-wavelength functionality; multi-level surface profiles; maskless lithography; digital micromirror device; PHASE ELEMENTS; OPERATION;
D O I
10.1117/12.2229178
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we demonstrate a dual-wavelength diffractive beam splitter to be used in parallel laser processing. The novel optical element, which is formed in a transparent material, generates two beam arrays at different wavelengths and allows their overlap at the process points on a workpiece. Since the splitter has a stochastically designed, complex, and deep surface profile, there is limited freedom in selecting a fabrication method. We designed the splitter using a simulated annealing algorithm and fabricated it in a photoresist through maskless exposure by using a digital micromirror device. We characterized the designed splitter, thereby corroborating the proposed beam-splitting concept.
引用
收藏
页数:7
相关论文
empty
未找到相关数据