FRACTAL TRAVELING WAVE SOLUTIONS FOR THE FRACTAL-FRACTIONAL ABLOWITZ-KAUP-NEWELL-SEGUR MODEL

被引:15
|
作者
Wang, Kangle [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
关键词
Conformable Fractional Derivative; Fractal Variational Principle; Ablowitz-Kaup-Newell-Segur Model; Fractal Traveling Wave Solution; EQUATION; DIMENSIONS;
D O I
10.1142/S0218348X22501717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly investigate the fractal-fractional Ablowitz-Kaup-Newell-Segur model, which is used to describe the propagation of the shallow wave water with unsmooth boundaries based on the conformable fractional derivative. A simple and powerful mathematical method is established to achieve the fractal traveling wave solutions for the fractal-fractional Ablowitz-Kaup-Newell-Segur model, which is variational reduced differential wave method. Finally, the geometric and physical properties of these fractal traveling wave solutions are elaborated by a number of three-dimensional graphics. The novel mathematical method provides a new idea for studying the fractal evolution models.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Symmetry group and exact solutions for the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation
    Ren, Bo
    Xu, Xue-jun
    Lin, Ji
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [22] Invariant analysis with conservation law of time fractional coupled Ablowitz-Kaup-Newell-Segur equations in water waves
    Sahoo, S.
    Saha Ray, S.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (03) : 530 - 543
  • [23] Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Yu, Shuimeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4345 - 4356
  • [24] Solitons in a generalized (2+1)-dimensional Ablowitz-Kaup-Newell-Segur system
    Zheng, CL
    Zhang, JF
    Wu, FM
    Sheng, ZM
    Chen, LQ
    CHINESE PHYSICS, 2003, 12 (05): : 472 - 478
  • [25] Novel soliton breathers for the higher-order Ablowitz-Kaup-Newell-Segur hierarchy
    Serkin, V. N.
    Belyaeva, T. L.
    OPTIK, 2018, 174 : 259 - 265
  • [26] INVERSE SCATTERING TRANSFORM FOR NEW MIXED SPECTRAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATIONS
    Zhang, Sheng
    You, Caihong
    THERMAL SCIENCE, 2020, 24 (04): : 2437 - 2444
  • [27] Computational Solutions of Fractional (2+1)-Dimensional Ablowitz-Kaup-Newell-Segur Equation Using an Analytic Method and Application
    Zulfiqar, Aniqa
    Ahmad, Jamshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (01) : 1003 - 1017
  • [28] Variable Separation Solutions for the (2+1)-Dimensional General Ablowitz-Kaup-Newell-Segur Equation
    Lei, Jun
    Ma, Song-Hua
    Fang, Jian-Ping
    MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 1186 - 1189
  • [29] An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz-Kaup-Newell-Segur Scenario
    Ma, Wen-Xiu
    AXIOMS, 2024, 13 (08)
  • [30] FINITE-GAP SOLUTIONS OF NONLOCAL EQUATIONS I N ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    Smirnov, A. O.
    Matveev, V. B.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 81 - 98