GLOBAL EXISTENCE OF STRONG SOLUTIONS TO INCOMPRESSIBLE MHD
被引:5
作者:
Gong, Huajun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Inst Math Sci, Hefei 230026, Anhui, Peoples R ChinaUniv Sci & Technol China, Inst Math Sci, Hefei 230026, Anhui, Peoples R China
Gong, Huajun
[1
]
Li, Jinkai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R China
Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, IsraelUniv Sci & Technol China, Inst Math Sci, Hefei 230026, Anhui, Peoples R China
Li, Jinkai
[2
,3
]
机构:
[1] Univ Sci & Technol China, Inst Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R China
[3] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
Incompressible MHD;
global existence and uniqueness;
strong solutions;
COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS;
REGULARITY CRITERIA;
VACUUM;
FLOWS;
D O I:
10.3934/cpaa.2014.13.1337
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We establish the global existence and uniqueness of strong solutions to the initial boundary value problem for the incompressible MHD equations in bounded smooth domains of R-3 under some suitable smallness conditions. The initial density is allowed to have vacuum, in particular, it can vanish in a set of positive Lebessgue measure. More precisely, under the assumption that the production of the quantities parallel to root rho(0)u(0)parallel to(2)(L2(Omega)) + parallel to H-0 parallel to(2)(L2(Omega)) and parallel to del u(0)parallel to(2)(L2(Omega)) + parallel to del H-0 parallel to(2)(L2(Omega)) is suitably small, with the smallness depending only on the bound of the initial density and the domain, we prove that there is a unique strong solution to the Dirichlet problem of the incompressible MHD system.