A Proposal-Based Solution to Spatio-Temporal Action Detection in Untrimmed Videos

被引:15
作者
Gleason, Joshua [1 ]
Ranjan, Rajeev [1 ]
Schwarcz, Steven [1 ]
Castillo, Carlos D. [1 ]
Chen, Jun-Cheng [1 ]
Chellappa, Rama [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
来源
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2019年
关键词
D O I
10.1109/WACV.2019.00021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing approaches for spatio-temporal action detection in videos are limited by the spatial extent and temporal duration of the actions. In this paper, we present a modular system for spatio-temporal action detection in untrimmed security videos. We propose a two stage approach. The first stage generates dense spatio-temporal proposals using hierarchical clustering and temporal jittering techniques on frame-wise object detections. The second stage is a Temporal Refinement I3D (TRI-3D) network that performs action classification and temporal refinement on the generated proposals. The object detection-based proposal generation step helps in detecting actions occurring in a small spatial region of a video frame, while temporal jittering and refinement helps in detecting actions of variable lengths. Experimental results on the spatio-temporal action detection dataset - DIVA - show the effectiveness of our system. For comparison, the performance of our system is also evaluated on the THUMOS'14 temporal action detection dataset.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 50 条
  • [41] Spatio-Temporal Action Detection Under Large Motion
    Singh, Gurkirt
    Choutas, Vasileios
    Saha, Suman
    Yu, Fisher
    Van Gool, Luc
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5998 - 6007
  • [42] Spatio-Temporal Vector of Locally Max Pooled Features for Action Recognition in Videos
    Duta, Ionut Cosmin
    Ionescu, Bogdan
    Aizawa, Kiyoharu
    Sebe, Nicu
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3205 - 3214
  • [43] A Spatio-Temporal Deep Learning Approach For Human Action Recognition in Infrared Videos
    Shah, Anuj K.
    Ghosh, Ripul
    Akula, Aparna
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [44] Fine-grained Action Detection in Untrimmed Surveillance Videos
    Aakur, Sathyanarayanan
    Sawyer, Daniel
    Sarkar, Sudeep
    2019 IEEE WINTER APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2019, : 38 - 40
  • [45] AutoLoc: Weakly-Supervised Temporal Action Localization in Untrimmed Videos
    Shou, Zheng
    Gao, Hang
    Zhang, Lei
    Miyazawa, Kazuyuki
    Chang, Shih-Fu
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 162 - 179
  • [46] A Proposal of Spatio-Temporal Pattern Queries
    Gorawski, Marcin
    Jureczek, Pawel
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 587 - 593
  • [47] Proposal-based Multiple Instance Learning for Weakly-supervised Temporal Action Localization
    Ren, Huan
    Yang, Wenfei
    Zhang, Tianzhu
    Zhang, Yongdong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2394 - 2404
  • [48] Hierarchical chat-based strategies with MLLMs for Spatio-temporal action detection
    Zhou, Xuyang
    Wang, Ye
    Tao, Fei
    Yu, Hong
    Liu, Qun
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (04)
  • [49] Video action detection by learning graph-based spatio-temporal interactions
    Tomei, Matteo
    Baraldi, Lorenzo
    Calderara, Simone
    Bronzin, Simone
    Cucchiara, Rita
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 206
  • [50] Real-Time Action Detection Based on Spatio-Temporal Interaction Perception
    Ke X.
    Miao X.
    Guo W.-Z.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (02): : 574 - 588