Spatiotemporal control of coacervate formation within liposomes

被引:170
作者
Deshpande, Siddharth [1 ]
Brandenburg, Frank [1 ]
Lau, Anson [1 ]
Last, Mart G. F. [1 ]
Spoelstra, Willem Kasper [1 ]
Reese, Louis [1 ]
Wunnava, Sreekar [1 ]
Dogterom, Marileen [1 ]
Dekker, Cees [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci Delft, Dept Bionanosci, Maasweg 9, NL-2629 HZ Delft, Netherlands
基金
欧洲研究理事会;
关键词
COMPLEX COACERVATION; PHASE-TRANSITION; DROPLETS; CELLS; COMPARTMENTALIZATION; SEPARATION; MEMBRANES; GRANULES; OCTANOL; MODEL;
D O I
10.1038/s41467-019-09855-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liquid-liquid phase separation (LLPS), especially coacervation, plays a crucial role in cell biology, as it forms numerous membraneless organelles in cells. Coacervates play an indispensable role in regulating intracellular biochemistry, and their dysfunction is associated with several diseases. Understanding of the LLPS dynamics would greatly benefit from controlled in vitro assays that mimic cells. Here, we use a microfluidics-based methodology to form coacervates inside cell-sized (similar to 10 mu m) liposomes, allowing control over the dynamics. Protein-pore-mediated permeation of small molecules into liposomes triggers LLPS passively or via active mechanisms like enzymatic polymerization of nucleic acids. We demonstrate sequestration of proteins (FtsZ) and supramolecular assemblies (lipid vesicles), as well as the possibility to host metabolic reactions (beta-galactosidase activity) inside coacervates. This coacervate-in-liposome platform provides a versatile tool to understand intracellular phase behavior, and these hybrid systems will allow engineering complex pathways to reconstitute cellular functions and facilitate bottom-up creation of synthetic cells.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Phase Separation: Linking Cellular Compartmentalization to Disease
    Aguzzi, Adriano
    Altmeyer, Matthias
    [J]. TRENDS IN CELL BIOLOGY, 2016, 26 (07) : 547 - 558
  • [2] [Anonymous], ANGEW CHEM INT ED
  • [3] RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly
    Aumiller, William M., Jr.
    Cakmak, Fatma Pir
    Davis, Bradley W.
    Keating, Christine D.
    [J]. LANGMUIR, 2016, 32 (39) : 10042 - 10053
  • [4] Aumiller WM, 2016, NAT CHEM, V8, P129, DOI [10.1038/NCHEM.2414, 10.1038/nchem.2414]
  • [5] Biomolecular condensates: organizers of cellular biochemistry
    Banani, Salman F.
    Lee, Hyun O.
    Hyman, Anthony A.
    Rosen, Michael K.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) : 285 - 298
  • [6] Reentrant Phase Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets
    Banerjee, Priya R.
    Milin, Anthony N.
    Moosa, Mahdi Muhammad
    Onuchic, Paulo L.
    Deniz, Ashok A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (38) : 11354 - 11359
  • [7] The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids
    Beren, Christian
    Dreesens, Lisa L.
    Liu, Katherine N.
    Knobler, Charles M.
    Gelbart, William M.
    [J]. BIOPHYSICAL JOURNAL, 2017, 113 (02) : 339 - 347
  • [8] The Temperature Dependence of Lipid Membrane Permeability, its Quantized Nature, and the Influence of Anesthetics
    Blicher, Andreas
    Wodzinska, Katarzyna
    Fidorra, Matthias
    Winterhalter, Mathias
    Heimburg, Thomas
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (11) : 4581 - 4591
  • [9] Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation
    Brangwynne, Clifford P.
    Eckmann, Christian R.
    Courson, David S.
    Rybarska, Agata
    Hoege, Carsten
    Gharakhani, Joebin
    Juelicher, Frank
    Hyman, Anthony A.
    [J]. SCIENCE, 2009, 324 (5935) : 1729 - 1732
  • [10] Towards Self-Assembled Hybrid Artificial Cells: Novel Bottom-Up Approaches to Functional Synthetic Membranes
    Brea, Roberto J.
    Hardy, Michael D.
    Devaraj, Neal K.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (36) : 12564 - 12570