Optimal Control in a Nonlinear Sequential Rendezvous Problem

被引:0
|
作者
Berdyshev, Yu. I. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg 620990, Russia
关键词
D O I
10.1134/S1064230719010039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm for constructing the time optimal control of a nonlinear fourth-order system that must visit two fixed points in the prescribed order is proposed. This system describes the motion of a car or an aircraft in the horizontal plane with a variable controllable speed and controllable steering angle.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 50 条
  • [1] Optimal Control in a Nonlinear Sequential Rendezvous Problem
    Yu. I. Berdyshev
    Journal of Computer and Systems Sciences International, 2019, 58 : 95 - 104
  • [2] Singular optimal control for rendezvous problem for cooperative vehicle control
    Ekoru, John E. D.
    Ngwako, Mohlalakoma T.
    Madahana, Milka M. C. I.
    Nyandoro, Otis T. C.
    IFAC PAPERSONLINE, 2023, 56 (02): : 3320 - 3325
  • [3] Sequential Convex Programming for Nonlinear Optimal Control Problem in UAV Path Planning
    Zhang, Zhe
    Li, Jianxun
    Wang, Jun
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1966 - 1971
  • [4] On a nonlinear problem of a sequential control with a parameter
    Berdyshev, Yu. I.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2008, 47 (03) : 380 - 385
  • [5] On a nonlinear problem of a sequential control with a parameter
    Yu. I. Berdyshev
    Journal of Computer and Systems Sciences International, 2008, 47 : 380 - 385
  • [6] Nonlinear Optimal Control of Relative Rotational and Translational Motion of Spacecraft Rendezvous
    Navabi, M.
    Akhloumadi, Mahdi R.
    JOURNAL OF AEROSPACE ENGINEERING, 2017, 30 (05)
  • [7] On an optimal control problem for a nonlinear system
    Surkov, P. G.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 241 - 249
  • [8] An optimal control approach to robust control of nonlinear spacecraft rendezvous system with θ-D technique
    School of Mathematical Science, Heilongjiang University, No. 74, Xuefu Road, Harbin 150080, China
    不详
    不详
    Int. J. Innov. Comput. Inf. Control, 5 (2099-2110):
  • [9] PROBLEM OF OPTIMAL RENDEZVOUS FOR A NONZERO DURATION
    BIEN, Z
    CHYUNG, DH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 23 (03) : 401 - 411
  • [10] Sequential Operator Splitting for Constrained Nonlinear Optimal Control
    Sindhwani, Vikas
    Roelofs, Rebecca
    Kalakrishnan, Mrinal
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4864 - 4871