Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms

被引:28
作者
Chen, Yong-Liang [1 ]
Chen, Bao-Dong [1 ]
Hu, Ya-Jun [1 ]
Li, Tao [1 ]
Zhang, Xin [1 ]
Hao, Zhi-Peng [1 ]
Wang, You-Shan [2 ]
机构
[1] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100097, Peoples R China
关键词
Arbuscular mycorrhizal fungi; Ammonia-oxidizing archaea; Ammonia-oxidizing bacteria; Soil nitrogen cycling; Microbial community structure; NITROGEN ACQUISITION; PLANT; PHYLOGENY; DIVERSITY; GROWTH; HYPHAE; WATER; FERTILIZATION; COLONIZATION; TRANSPORT;
D O I
10.1016/j.pedobi.2013.07.003
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Both arbuscular mycorrhizal (AM) fungi and ammonia oxidizers are important soil microbial groups in regulating soil N cycling. However, knowledge of their interactions, especially the direct influences of AM fungi on ammonia oxidizers is very limited to date. In the present study, a controlled microcosm experiment was established to examine the effects of AM fungi and N supply level on the abundance and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA) in the rhizosphere of alfalfa plants (Medicago sativa L) inoculated with AM fungus Glomus intraradices. Effects were studied using combined approaches of quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The results showed that inoculation with AM fungi significantly increased the plant dry weights, total N and P uptake. Concomitantly, AM fungi significantly decreased the amoA gene copy numbers. of AOA and AOB in the root compartment (RC) but not in the hyphal compartment (HC). Moreover, AM fungi induced some changes in AOA community structure in HC and RC, while only marginal variations in AOA composition were observed to respond to N supply level in HC. Neither RC nor HC showed significant differences in AOB composition irrespective of experimental treatments. The experimental results suggested that AM fungi could directly shape AOA composition, but more likely exerted indirect influences on AOA and AOB abundance via the plant pathway. In general, AM fungi may play an important role in mediating ammonia oxidizers, but the AOA community appeared to be more sensitive than the AOB community to AM fungi. (C) 2013 Elsevier GmbH. All rights reserved.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 52 条
[1]   Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi [J].
Amora-Lazcano, E ;
Vazquez, MM ;
Azcon, R .
BIOLOGY AND FERTILITY OF SOILS, 1998, 27 (01) :65-70
[2]   Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers [J].
Avrahami, S ;
Conrad, R ;
Braker, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (11) :5685-5692
[3]   Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures [J].
Avrhami, S ;
Conrad, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :6152-6164
[4]   Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria [J].
Bollmann, A ;
Bär-Gilissen, MJ ;
Laanbroek, HJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (10) :4751-4757
[5]   Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil [J].
Cavagnaro, T. R. ;
Jackson, L. E. ;
Scow, K. M. ;
Hristova, K. R. .
MICROBIAL ECOLOGY, 2007, 54 (04) :618-626
[6]   Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia [J].
Chen, Yongliang ;
Xu, Zhuwen ;
Hu, Hangwei ;
Hu, Yajun ;
Hao, Zhipeng ;
Jiang, Yong ;
Chen, Baodong .
APPLIED SOIL ECOLOGY, 2013, 68 :36-45
[7]   Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions [J].
Di, Hong J. ;
Cameron, Keith C. ;
Shen, Ju-Pei ;
Winefield, Chris S. ;
O'Callaghan, Maureen ;
Bowatte, Saman ;
He, Ji-Zheng .
FEMS MICROBIOLOGY ECOLOGY, 2010, 72 (03) :386-394
[8]   ARCHITECTURAL ANALYSIS OF PLANT-ROOT SYSTEMS .1. ARCHITECTURAL CORRELATES OF EXPLOITATION EFFICIENCY [J].
FITTER, AH ;
STICKLAND, TR ;
HARVEY, ML ;
WILSON, GW .
NEW PHYTOLOGIST, 1991, 118 (03) :375-382
[9]   Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J].
Francis, CA ;
Roberts, KJ ;
Beman, JM ;
Santoro, AE ;
Oakley, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14683-14688
[10]   WATER AND NUTRIENT TRANSLOCATION BY HYPHAE OF GLOMUS-MOSSEAE [J].
GEORGE, E ;
HAUSSLER, KU ;
VETTERLEIN, D ;
GORGUS, E ;
MARSCHNER, H .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1992, 70 (11) :2130-2137