On approximation by ridge functions

被引:21
作者
Kroo, A
机构
[1] Math. Inst. Hung. Acad. of Sci., Budapest
关键词
ridge functions; homogeneous polynomials; fundamentality; rate of approximation;
D O I
10.1007/s003659900053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ridge functions are defined as functions of the form f(a.x), where f:R --> R, x is an element of R-k, and a belongs to the given ''direction'' set A subset of R-k. In this paper we study the fundamentality of ridge functions for variable directions sets A and discuss the rate of approximation by ridge functions.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 8 条
[1]  
Bernstein SN, 1952, COLLECTED WORKS, VI
[2]   ON CERTAIN ORTHOGONAL POLYNOMIALS, NIKOLSKI-TYPE AND TURAN-TYPE INEQUALITIES, AND INTERPOLATORY PROPERTIES OF BEST APPROXIMANTS [J].
KROO, A .
JOURNAL OF APPROXIMATION THEORY, 1993, 73 (02) :162-179
[3]   MULTILAYER FEEDFORWARD NETWORKS WITH A NONPOLYNOMIAL ACTIVATION FUNCTION CAN APPROXIMATE ANY FUNCTION [J].
LESHNO, M ;
LIN, VY ;
PINKUS, A ;
SCHOCKEN, S .
NEURAL NETWORKS, 1993, 6 (06) :861-867
[4]   FUNDAMENTALITY OF RIDGE FUNCTIONS [J].
LIN, VY ;
PINKUS, A .
JOURNAL OF APPROXIMATION THEORY, 1993, 75 (03) :295-311
[5]   ENTIRE FUNCTIONS AND MUNTZ-SZASZ TYPE APPROXIMATION [J].
LUXEMBURG, WA ;
KOREVAAR, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) :23-+
[6]  
ROGERS CA, MATHEMATIKA, V10, P157
[7]  
STEIN E. M., 1971, INTRO FOURIER ANAL E, V32
[8]  
VOSTRECOV BA, 1993, SOV MATH DOKL, V4, P1588