Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations

被引:211
作者
Guo, Jianxin [1 ,2 ]
Peng, Qiuming [1 ]
Fu, Hui [1 ]
Zou, Guodong [1 ]
Zhang, Qingrui [3 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Hebei Prov Key Lab Optoelect Informat Mat, Baoding 071002, Peoples R China
[3] Yanshan Univ, Sch Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
关键词
TRANSITION-METAL; ELECTRON LOCALIZATION; LEAD IONS; OXIDE; CARBIDES; ELEMENTS; FAMILY;
D O I
10.1021/acs.jpcc.5b05426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The two-dimensional (2D) layered MXene (Ti3C2(OH)(x)F2-x) material can be alkalization intercalated to achieve heavy-metal ion adsorption. Herein the adsorption kinetics of heavy-metal ions and the effect of intercalated sites on adsorption have been interpreted by first-principles with density functional theory. When the coverage of the heavy-metal ion is larger than 1/9 monolayer, the two-dimensional alkalization-intercalated MXene (alk-MXene: Ti3C2(OH)(2)) exhibits strong heavy-metal ion absorbability. The hydrogen atoms around the adsorbed heavy-metal atom are prone to form a hydrogen potential trap, maintaining charge equilibrium. In addition, the ion adsorption efficiency of alk-MXene decreases due to the occupation of the F atom but accelerates by the intercalation of Li, Na, and K atoms. More importantly, the hydroxyl site vertical to the titanium atom shows a stronger trend of removing the metal ion than other positions.
引用
收藏
页码:20923 / 20930
页数:8
相关论文
共 50 条
[1]  
Barsoum MW, 2013, MAX PHASES: PROPERTIES OF MACHINABLE TERNARY CARBIDES AND NITRIDES, P1, DOI 10.1002/9783527654581
[2]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   First-principles study of graphene-lithium structures for battery applications [J].
Buldum, Alper ;
Tetiker, Gulcin .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (15)
[5]   Superb Adsorption Capacity and Mechanism of Flowerlike Magnesium Oxide Nanostructures for Lead and Cadmium Ions [J].
Cao, Chang-Yan ;
Qu, Jin ;
Wei, Fang ;
Liu, Hua ;
Song, Wei-Guo .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (08) :4283-4287
[6]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[7]   Colorimetric Assay for Lead Ions Based on the Leaching of Gold Nanoparticles [J].
Chen, Yi-You ;
Chang, Huan-Tsung ;
Shiang, Yen-Chun ;
Hung, Yu-Lun ;
Chiang, Cheng-Kang ;
Huang, Chih-Ching .
ANALYTICAL CHEMISTRY, 2009, 81 (22) :9433-9439
[8]   Ultrahard boron-rich tantalum boride: Monoclinic TaB4 [J].
Chu, Binhua ;
Li, Da ;
Bao, Kuo ;
Tian, Fubo ;
Duan, Defang ;
Sha, Xiaojing ;
Hou, Pugeng ;
Liu, Yunxian ;
Zhang, Huadi ;
Liu, Bingbing ;
Cui, Tian .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 617 :660-664
[9]   INTERPRETATION OF THE FERMI HOLE CURVATURE [J].
DOBSON, JF .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (06) :4328-4332
[10]   Chemical coagulation of combined sewer overflow:: Heavy metal removal and treatment optimization [J].
El Samrani, A. G. ;
Lartiges, B. S. ;
Villieras, F. .
WATER RESEARCH, 2008, 42 (4-5) :951-960