Bioavailability of PAHs: Effects of soot carbon and PAH source

被引:161
作者
Thorsen, WA [1 ]
Cope, WG [1 ]
Shea, D [1 ]
机构
[1] N Carolina State Univ, Dept Environm & Mol Toxicol, Raleigh, NC 27695 USA
关键词
D O I
10.1021/es0306056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The bioavailability of 38 individual polycyclic aromatic hydrocarbon (PAH) compounds was determined through calculation of biota-sediment-accumulation factors (BSAF). BSAF values were calculated from individual PAH concentrations in freshwater mussel, marine clam, and sediment obtained from field and laboratory bioaccumulation studies. Sediment that was amended with different types of soot carbon (SC) was used in some of the bioaccumulation experiments. BSAF values for petrogenic PAH were greater than those for pyrogenic PAH (e.g., 1.57 +/- 0.53 vs 0.25 +/- 0.23, respectively), indicating that petrogenic PAH are more bioavailable than pyrogenic PAH (p < 0.05). This trend was consistent among marine and freshwater sites. Increased SC content of sediment resulted in a linear decrease in the bioavailability of pyrogenic PAHs (r(2) = 0.85). The effect of increasing SIC content on petrogenic PAH was negligible. SC was considered as an additional sorptive phase when calculating BSAF values, and using PAH-SC partition coefficients from the literature, we obtained unreasonably large BSAF values for all petrogenic PAH and some pyrogenic PAH. This led us to conclude that a quantitative model to assess bioavailability through a combination of organic carbon and soot carbon sorption is not applicable among field sites with a wide range of soot carbon fractions and PAH sources, at least given our current knowledge of PAH-SC partitioning. Our data offer evidence that many factors including analysis of a full suite of PAH analytes, PAH hydrophobicity, sediment organic carbon content, sediment soot carbon content, and PAH source are important to adequately assess PAH bioavailability in the environment.
引用
收藏
页码:2029 / 2037
页数:9
相关论文
共 43 条
[1]   Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments [J].
Accardi-Dey, A ;
Gschwend, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (01) :21-29
[2]   Aging, bioavailability, and overestimation of risk from environmental pollutants [J].
Alexander, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (20) :4259-4265
[3]   HOW TOXIC ARE TOXIC-CHEMICALS IN SOIL [J].
ALEXANDER, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (11) :2713-2717
[4]   Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea [J].
Baumard, P ;
Budzinski, H ;
Garrigues, P .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1998, 17 (05) :765-776
[5]   Evaluation of PCB and hexachlorobenzene biota-sediment accumulation factors based on ingested sediment in a deposit-feeding clam [J].
Boese, BL ;
Lee, H ;
Specht, DT ;
Pelletier, J ;
Randall, R .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1996, 15 (09) :1584-1589
[6]   THE IMPORTANCE OF SPHEROIDAL CARBONACEOUS PARTICLES (SCPS) FOR THE DISTRIBUTION OF PARTICULATE POLYCYCLIC AROMATIC-HYDROCARBONS (PAHS) IN AN ESTUARINE-LIKE URBAN COASTAL WATER AREA [J].
BROMAN, D ;
NAF, C ;
WIK, M ;
RENBERG, I .
CHEMOSPHERE, 1990, 21 (1-2) :69-77
[7]   Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations [J].
Bucheli, TD ;
Gustafsson, Ö .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (24) :5144-5151
[8]   Ubiquitous observations of enhanced solid affinities for aromatic organochlorines in field situations:: Are in situ dissolved exposures overestimated by existing partitioning models? [J].
Bucheli, TD ;
Gustafsson, Ö .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2001, 20 (07) :1450-1456
[9]   A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources [J].
Burns, WA ;
Mankiewicz, PJ ;
Bence, AE ;
Page, DS ;
Parker, KR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1997, 16 (06) :1119-1131
[10]   Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons [J].
Chung, N ;
Alexander, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (20) :3605-3608