Extracellular matrix-based cryogels for cartilage tissue engineering

被引:54
作者
Han, Min-Eui [1 ]
Kim, Su-Hwan [1 ]
Kim, Hwan D. [2 ]
Yim, Hyun-Gu [2 ]
Bencherif, Sidi A. [3 ,4 ,6 ]
Kim, Tae-Il [5 ]
Hwang, Nathaniel S. [1 ,2 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, N Bio Inst, Seoul, South Korea
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Univ Technol Compiegne, UTC CNRS UMR 7338, Biomech & Bioengn BMBI, BP 20529,Rue Personne Roberval, Compiegne, France
[5] Seoul Natl Univ, Sch Dent, Dept Periodontol, Seoul, South Korea
[6] Northeastern Univ, Dept Chem Engn, 360 Huntington Ave, Boston, MA 02215 USA
基金
新加坡国家研究基金会;
关键词
Cryogel; Hyaluronic acid; Chondroitin sulfate; Cartilage tissue engineering; Poly (ethylene glycol) diacrylates; CO-PGA HYDROGELS; HYALURONIC-ACID; CHONDROITIN SULFATE; GELATIN CRYOGELS; IN-VITRO; SCAFFOLDS; PROLIFERATION; ATTACHMENT; NETWORKS; DEFECTS;
D O I
10.1016/j.ijbiomac.2016.05.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we investigated various highly porous extracellular matrix (ECM)-based cryogels for cartilage tissue engineering. For the fabrication of ECM-based cryogels, either methacrylated chondroitin sulfate (MeCS) or methacrylated hyaluronic acid (MeHA) were cross-linked along with poly (ethylene glycol) diacrylates (PEGDA) via free radical polymerization under freezing conditions. This procedure induces ice crystallization (used as a porogen) prior polymer crosslinking in which, after complete cryopolymerization, a thawing process transforms the ice crystals into a unique interconnected macroporous structure within ECM-cryogels. The developed ECM-cryogels exhibited an average macroporosity of 75% and supported the infiltration of chondrocyteds. When rabbit chondrocytes were cultured on ECM-cryogels, MeCS-based cryogels stimulated aggrecan gene expression and GAG accumulation, whereas MeHA-based cryogels stimulated type II collagen gene expression and collagen accumulation. These results demonstrate that design of ECM-based cryogels can play an important role in promoting specific ECM proteins secretion for cartilage tissue engineering. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1410 / 1419
页数:10
相关论文
共 39 条
  • [31] Hyaluronic acid (hyaluronan): a review
    Necas, J.
    Bartosikova, L.
    Brauner, P.
    Kolar, J.
    [J]. VETERINARNI MEDICINA, 2008, 53 (08) : 397 - 411
  • [32] POOLE AR, 1984, J BIOL CHEM, V259, P4849
  • [33] Spiller KL, 2011, TISSUE ENG PART B-RE, V17, P281, DOI [10.1089/ten.teb.2011.0077, 10.1089/ten.TEB.2011.0077]
  • [34] Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro
    Spiteri, C. G.
    Pilliar, R. M.
    Kandel, R. A.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 78A (04) : 676 - 683
  • [35] DETERMINATION OF HYDROXYPROLINE
    STEGEMAN.H
    STALDER, K
    [J]. CLINICA CHIMICA ACTA, 1967, 18 (02) : 267 - &
  • [36] Hyalograft® C:: Hyaluronan-based scaffolds in tissue-engineered cartilage
    Tognana, Enrico
    Borrione, Anna
    De Luca, Claudio
    Pavesio, Alessandra
    [J]. CELLS TISSUES ORGANS, 2007, 186 (02) : 97 - 103
  • [37] Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function
    Watanabe, H
    Yamada, Y
    Kimata, K
    [J]. JOURNAL OF BIOCHEMISTRY, 1998, 124 (04) : 687 - 693
  • [38] Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks
    Xu, Xian
    Jha, Amit K.
    Harrington, Daniel A.
    Farach-Carson, Mary C.
    Jia, Xinqiao
    [J]. SOFT MATTER, 2012, 8 (12) : 3280 - 3294
  • [39] Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering
    Yoo, HS
    Lee, EA
    Yoon, JJ
    Park, TG
    [J]. BIOMATERIALS, 2005, 26 (14) : 1925 - 1933