Parisian ruin probability for spectrally negative Levy processes

被引:80
作者
Loeffen, Ronnie [1 ]
Czarna, Irmina [2 ]
Palmowski, Zbigniew [2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] Univ Wroclaw, Dept Math, PL-50384 Wroclaw, Poland
关键词
Levy process; Parisian ruin; risk process; ruin probability;
D O I
10.3150/11-BEJ404
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we give, for a spectrally negative Levy process, a compact formula for the Parisian ruin probability, which is defined by the probability that the process exhibits an excursion below zero, with a length that exceeds a certain fixed period r. The formula involves only the scale function of the spectrally negative Levy process and the distribution of the process at time r.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 2006, INTRO LECT FLUCTUATI
[2]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[3]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[4]   RUIN PROBABILITY WITH PARISIAN DELAY FOR A SPECTRALLY NEGATIVE LEVY RISK PROCESS [J].
Czarna, Irmina ;
Palmowski, Zbigniew .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) :984-1002
[5]  
Dassios A., MARKOV PROCESSES
[6]  
Dassios A., WORKING PAPER
[7]  
Lebedev NN., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[8]   De Finetti's optimal dividends problem with an affine penalty function at ruin [J].
Loeffen, Ronnie L. ;
Renaud, Jean-Francois .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01) :98-108
[9]  
Patie P., 2010, PREPRINT
[10]  
Renaud J.-F., 2010, PREPRINT