Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution

被引:108
作者
Fuchs, Timo [1 ]
Drnec, Jakub [2 ]
Calle-Vallejo, Federico [3 ,4 ]
Stubb, Natalie [5 ]
Sandbeck, Daniel J. S. [6 ,7 ]
Ruge, Martin [1 ]
Cherevko, Serhiy [6 ]
Harrington, David A. [5 ]
Magnussen, Olaf M. [1 ]
机构
[1] Christian Albrechts Univ Kiel, Inst Expt & Angew Phys, Kiel, Germany
[2] European Synchrotron Radiat Facil, Expt Div, Grenoble, France
[3] Univ Barcelona, Dept Ciencia Mat & Quim Fis, Barcelona, Spain
[4] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, Barcelona, Spain
[5] Univ Victoria, Chem Dept, Victoria, BC, Canada
[6] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Erlangen, Germany
[7] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Biol Engn, Erlangen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
X-RAY-DIFFRACTION; SURFACE-STRUCTURE; OXYGEN REDUCTION; ELECTROCHEMICAL OXIDATION; PT(111) SURFACE; PERCHLORIC-ACID; OXIDE; GROWTH; REFLECTIVITY; ADSORPTION;
D O I
10.1038/s41929-020-0497-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Platinum dissolution and restructuring due to surface oxidation are primary degradation mechanisms that limit the lifetime of platinum-based electrocatalysts for electrochemical energy conversion. Here, we have studied well-defined Pt(100) and Pt(111) electrode surfaces by in situ high-energy surface X-ray diffraction, online inductively coupled plasma mass spectrometry and density functional theory calculations to elucidate the atomic-scale mechanisms of these processes. The locations of the extracted platinum atoms after Pt(100) oxidation reveal distinct differences from the Pt(111) case, which explains the different surface stability. The evolution of a specific oxide stripe structure on Pt(100) produces unstable surface atoms that are prone to dissolution and restructuring, leading to one order of magnitude higher dissolution rates.
引用
收藏
页码:754 / +
页数:14
相关论文
共 58 条
[1]  
[Anonymous], 1986, Numerical Recipes in Fortran 77, The Art of Scientific Computing
[2]   Structural Transformation of Monocrystalline Platinum Electrodes upon Electro-oxidation and Electro-dissolution [J].
Arulmozhi, Nakkiran ;
Esau, Derek ;
Lamsal, Ram P. ;
Beauchemin, Diane ;
Jerkiewicz, Gregory .
ACS CATALYSIS, 2018, 8 (07) :6426-6439
[3]   The fast azimuthal integration Python']Python library: pyFAI [J].
Ashiotis, Giannis ;
Deschildre, Aurore ;
Nawaz, Zubair ;
Wright, Jonathan P. ;
Karkoulis, Dimitrios ;
Picca, Frederic Emmanuel ;
Kieffer, Jerome .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 :510-519
[4]   Examining the Structure Sensitivity of the Oxygen Evolution Reaction on Pt Single-Crystal Electrodes: A Combined Experimental and Theoretical Study [J].
Bizzotto, Francesco ;
Ouhbi, Hassan ;
Fu, Yongchun ;
Wiberg, Gustav K. H. ;
Aschauer, Ulrich ;
Arenz, Matthias .
CHEMPHYSCHEM, 2019, 20 (22) :3154-3162
[5]   ANGLE CALCULATIONS FOR 3- AND 4- CIRCLE X-RAY AND NEUTRON DIFFRACTOMETERS [J].
BUSING, WR ;
LEVY, HA .
ACTA CRYSTALLOGRAPHICA, 1967, 22 :457-&
[6]   Affordable Estimation of Solvation Contributions to the Adsorption Energies of Oxygenates on Metal Nanoparticles [J].
Calle-Vallejo, Federico ;
de Morais, Rodrigo F. ;
Illas, Francesc ;
Loffreda, David ;
Sautet, Philippe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (09) :5578-5582
[7]   Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum [J].
Cherevko, Serhiy ;
Kulyk, Nadiia ;
Mayrhofer, Karl J. J. .
NANO ENERGY, 2016, 29 :275-298
[8]   Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte [J].
Cherevko, Serhiy ;
Topalov, Angel A. ;
Zeradjanin, Aleksandar R. ;
Keeley, Gareth P. ;
Mayrhofer, Karl J. J. .
ELECTROCATALYSIS, 2014, 5 (03) :235-240
[9]   Thirty years of platinum single crystal electrochemistry [J].
Climent, V. ;
Feliu, Juan M. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (7-8) :1297-1315
[10]   SURFACE ORIENTATION DEPENDENCE OF OXIDE FILM GROWTH AT PLATINUM SINGLE-CRYSTALS [J].
CONWAY, BE ;
JERKIEWICZ, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :123-146