Bifurcation of degenerate homoclinic orbits to saddle-center in reversible systems

被引:2
作者
Liu, Xingbo [1 ]
Zhu, Deming [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible system; Homoclinic orbits; Saddle-center; Bifurcation;
D O I
10.1007/s11401-008-0038-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the bifurcation of homoclinic orbits from a degenerate homoclinic orbit in reversible system. The unperturbed system is assumed to have saddle-center type equilibrium whose stable and unstable manifolds intersect in two-dimensional manifolds. A perturbation technique for the detection of symmetric and nonsymmetric homoclinic orbits near the primary homoclinic orbits is developed. Some known results are extended.
引用
收藏
页码:575 / 584
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1998, METHODS QUALITATIV 1
[2]   Embedded solitons: solitary waves in resonance with the linear spectrum [J].
Champneys, AR ;
Malomed, BA ;
Yang, J ;
Kaup, DJ .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :340-354
[3]   Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics [J].
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :158-186
[4]   Bifurcation of homoclinic orbits to a saddle-center in reversible systems [J].
Klaus, J ;
Knobloch, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (09) :2603-2622
[5]   USING MELNIKOV METHOD TO SOLVE SILNIKOV PROBLEMS [J].
LIN, XB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :295-325
[6]   HOMOCLINIC PERIOD BLOW-UP IN REVERSIBLE AND CONSERVATIVE-SYSTEMS [J].
VANDERBAUWHEDE, A ;
FIEDLER, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :292-318
[7]   When gap solitons become embedded solitons: a generic unfolding [J].
Wagenknecht, T ;
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 177 (1-4) :50-70
[8]  
Wiggins S., 1988, GLOBAL BIFURCATION C
[9]   Detection of symmetric homoclinic orbits to saddle-centres in reversible systems [J].
Yagasaki, K ;
Wagenknecht, T .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (02) :169-181