A biomimetic tongue by photoluminescent metal-organic frameworks

被引:31
作者
Lee, Tu [1 ]
Lee, Hung Lin [1 ]
Tsai, Meng Hsun [1 ]
Cheng, Shao-Liang [1 ]
Lee, Sheng-Wei [2 ]
Hu, Jung-Chih [3 ]
Chen, Lien-Tai [3 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Jhong Li City 320, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Jhong Li City 320, Taiwan
[3] ITRI, Nano Common Lab, Div Platform Technol Adv Mat, Mat & Chem Res Labs, Hsinchu 31040, Taiwan
关键词
Biomimetic tongue; Photoluminescence; tau Scale; Metal-organic frameworks; POLY(ACRYLIC ACID); TASTE SENSOR; TRANSITIONS; RECOGNITION; TEA;
D O I
10.1016/j.bios.2012.11.014
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The taste sensing capabilities of a "biomimetic tongue" based on the photoluminescence (PL) responses of metal-organic frameworks (MOFs), [In(OH)(bdc)](n) (bdc=1,4-benzenedicarboxylate), [Tb(btc)](n) (MOF-76, btc=benzene-1,3,5-tricarboxylate), and [Ca-3(btc)(2)(DMF)(2)(H2O)(2)]center dot 3H(2)O are proven on aqueous solutions of five basic tastants: sucrose (sweet), caffeine (bitter), citric acid (sour), sodium chloride (salty) and monosodium glutamate (umami). For [In(OH)(bdc)](n), the tastant interacts stereochemically with poly(acrylic acid) (PAA) and alters its conformations. The frequency and magnitude of chelation between COO- pendant groups of PAA and In3+ nodes of [In(OH)(bdc)](n) framework influence the corresponding PL reponses. For MOF-76, the tastant interacts with incorporated water in MOF-76 through hydrogen bonding. The limitation of O-H bond stretching of water results in the enhancement of the PL intensity. For [Ca-3(BTC)(2)(DMF)(2)(H2O)(2)]center dot 3H(2)O, it is added as a third MOF component to increase the precision on taste discrimination. The significance of MOF-based "biomimetic tongue" includes: (1) PAA on [In(OH)(bdc)](n) mimics the taste receptor cells (TRCs) for their structural flexibility, (2) the Weber-Fechner law of human sensing that sensation is proportional to the logarithm of the stimulus intensity is observed between the PL emission response of MOF-76 and the concentration of tastant, (3) the strength of taste is quantified by the tau scale and the PL emission intensity of MOF-76, which are dependent on the logarithmic tastant concentration, (4) the tastant is identified by the shape of the 3D principal component analysis contour map (i.e., pattern recognition method), and (5) the fabrication of [In(OH)(bdc)](n)/PAA film by brushing is illustrated. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
[31]   Biomimetic metal-organic frameworks navigated biological bombs for efficient lung cancer therapy [J].
Yang, Langyu ;
Lin, Yinshan ;
Zhang, Jian ;
Huang, Jionghua ;
Qin, Aiping ;
Miao, Yingling ;
Wang, Peng ;
Yu, Xiyong ;
Wang, Le ;
Zhang, Lingmin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 625 :532-543
[32]   Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal-Organic Frameworks [J].
Liu, Xiao ;
Qi, Wei ;
Wang, Yuefei ;
Lin, Daiwu ;
Yang, Xuejiao ;
Su, Rongxin ;
He, Zhimin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) :33407-33415
[33]   Adenine Components in Biomimetic Metal-Organic Frameworks for Efficient CO2 Photoconversion [J].
Li, Ning ;
Liu, Jiang ;
Liu, Jing-Jing ;
Dong, Long-Zhang ;
Xin, Zhi-Feng ;
Teng, Yun-Lei ;
Lan, Ya-Qian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5226-5231
[34]   Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks [J].
Shen, Li ;
Wu, Hao Bin ;
Liu, Fang ;
Brosmer, Jonathan L. ;
Shen, Gurong ;
Wang, Xiaofeng ;
Zink, Jeffrey I. ;
Xiao, Qiangfeng ;
Cai, Mei ;
Wang, Ge ;
Lu, Yunfeng ;
Dunn, Bruce .
ADVANCED MATERIALS, 2018, 30 (23)
[35]   Engineering metal-organic frameworks-based nanozymes for enhanced biomimetic catalytic sensing [J].
Jiang, Zhong Wei ;
Gong, Xue ;
Wang, Yi ;
Li, Yuan Fang ;
Huang, Cheng Zhi .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 178
[36]   Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks [J].
Deng, Yang ;
Wang, Yue ;
Xiao, Xiao ;
Saucedo, Brett Jacob ;
Zhu, Zhijun ;
Xie, Mingsen ;
Xu, Xinru ;
Yao, Kun ;
Zhai, Yanling ;
Zhang, Zhen ;
Chen, Jun .
SMALL, 2022, 18 (38)
[37]   Metal-Covalent Organic Frameworks (MCOFs): A Bridge Between Metal-Organic Frameworks and Covalent Organic Frameworks [J].
Dong, Jinqiao ;
Han, Xing ;
Liu, Yan ;
Li, Haiyang ;
Cui, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) :13722-13733
[38]   Conversion from Heterometallic to Homometallic Metal-Organic Frameworks [J].
Song, Jeong Hwa ;
Lee, Giseong ;
Yoon, Jung Heum ;
Jang, Junyeon ;
Choi, Doosan ;
Yun, Heejun ;
Kwon, Kangin ;
Kim, Hojin ;
Hong, Chang Seop ;
Kim, Youngki ;
Han, Hogyu ;
Lim, Kwang Soo ;
Lee, Woo Ram .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (51) :11767-11775
[39]   The Chemistry of Metal-Organic Frameworks for Multicomponent Gas Separation [J].
Yang, Lifeng ;
Zhang, Peixin ;
Cui, Jiyu ;
Cui, Xili ;
Xing, Huabin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (46)
[40]   Antibody Targeted Metal-Organic Frameworks for Bioimaging Applications [J].
Butler, Kimberly S. ;
Pearce, Charles J. ;
Nail, Elizabeth A. ;
Vincent, Grace A. ;
Gallis, Dorina F. Sava .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) :31217-31224