INVERSE PROBLEM FOR A SECOND-ORDER HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATION WITH VARIABLE COEFFICIENTS FOR LOWER DERIVATIVES

被引:2
作者
Durdiev, D. K. [1 ]
Totieva, Z. D. [2 ,3 ]
机构
[1] Bukhara State Univ, Bukhara Dept, Math Inst, 11 Mukhammad Iqbol Str, Bukhara 200177, Uzbekistan
[2] Russian Acad Sci, Southern Math Inst, Vladikavkaz Sci Ctr, 93A,Markova Str, Vladikavkaz 362002, Russia
[3] North Ossetian State Univ, 46 Vatutina Str, Vladikavkaz 362025, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
inverse problem; hyperbolic integro-differential equation; Volterra integral equation; stability; delta function; kernel; ONE-DIMENSIONAL KERNEL;
D O I
10.33048/semi.2020.17.084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of determining the memory of a medium from a second-order equation of hyperbolic type with a constant principal part and variable coefficients for lower derivatives is considered. The method is based on the reduction of the problem to a non-linear system of Volterra equations of the second kind and uses the fundamental solution constructed by S. L. Sobolev for hyperbolic equation with variable coefficients. The theorem of global uniqueness, stability and the local theorem of existence are proved.
引用
收藏
页码:1106 / 1127
页数:22
相关论文
共 14 条
[1]   The problem of determining the one-dimensional kernel of the electroviscoelasticity equation [J].
Durdiev, D. K. ;
Totieva, Zh. D. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (03) :427-444
[2]   THE LOCAL SOLVABILITY OF A PROBLEM OF DETERMINING THE SPATIAL PART OF A MULTIDIMENSIONAL KERNEL IN THE INTEGRO-DIFFERENTIAL EQUATION OF HYPERBOLIC TYPE [J].
Durdiev, D. K. ;
Safarov, J. Sh. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (04) :37-47
[3]  
Durdiev D K, 1989, MATH ANAL DISC MATH, P19
[4]  
[Дурдиев Дурдимурод Каландарович Durdiev D.Q.], 2015, [Владикавказский математический журнал, Vladikavkazskii matematicheskii zhurnal], V17, P18
[5]   A MULTIDIMENSIONAL INVERSE PROBLEM FOR AN EQUATION WITH MEMORY [J].
DURDIEV, DK .
SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (03) :514-521
[6]  
Durdiev DK., 2007, J MATH PHYS ANAL GEO, V3, P411
[7]   The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations [J].
Durdiev, Durdimurod Kalandarovich ;
Totieva, Zhanna Dmitrievna .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) :8019-8032
[8]  
[Дурдиев Дурдимурод Каландарович Durdiev Durdimurod Qalandarovich], 2013, [Сибирский журнал индустриальной математики, Sibirskii zhurnal industrial'noi matematiki], VXVI, P72
[9]  
Lavrent'ev M. M., 1980, ILL POSED PROBLEMS M
[10]   AN INVERSE PROBLEM IN THE THEORY OF MATERIALS WITH MEMORY [J].
LORENZI, A ;
SINESTRARI, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (12) :1317-1335