Multiplexed CRISPR/Cas9 genome editing increases the efficacy of homologous-dependent repair of donor sequences in mammalian cells

被引:0
作者
Fok, Ezio T. [1 ]
Penny, Clement B. [1 ]
Mhlanga, Musa M. [2 ,3 ]
Weinberg, Marc S. [4 ,5 ,6 ]
机构
[1] Univ Witwatersrand, Sch Clin Med, Dept Internal Med, Med Oncol Res Unit, Johannesburg, South Africa
[2] CSIR, Gene Express & Biophys Grp, Synthet Biol Emerging Res Area, Pretoria, South Africa
[3] Univ Lisbon, Fac Med, Inst Mol Med, Unit Biophys & Gene Express, P-1699 Lisbon, Portugal
[4] Univ Witwatersrand, Sch Pathol, Dept Mol Med & Haematol, Antiviral Gene Therapy Res Unit, Johannesburg, South Africa
[5] Univ Witwatersrand, Sch Pathol, Dept Mol Med & Haematol, HIV Pathogenesis Res Unit, Johannesburg, South Africa
[6] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
基金
英国医学研究理事会; 新加坡国家研究基金会;
关键词
genome repair; genome targeting; sgRNA; HDR; T7 endonuclease I; PLURIPOTENT STEM-CELLS; ZINC-FINGER NUCLEASES; DOUBLE-STRAND BREAKS; CAENORHABDITIS-ELEGANS; CRISPR-CAS9; SYSTEM; DISEASE-MODELS; GENE; CAS9; DROSOPHILA; GENERATION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient and robust genome editing tools and strategies allow for specific and exact genetic changes to be captured in model systems, thereby accelerating both forward and reverse genetics studies. The development of CRISPR/Cas9 as a facile designer nuclease toolset has allowed for defined genetic modifications to be efficiently made through homology-directed repair of targeted DNA double-stranded breaks (DSBs) using exogenous repair templates. However, traditional single DSB strategies are still relatively inefficient as the short gene conversion tracts of mammalian cell systems limit the extent of achievable gene alteration from the DSB site. In order to improve on the inefficiency, we devised a dual cut strategy, which relies on reconstituting entire deleted gene fragments to precisely modify extensive gene regions of interest. Using the CRISPR/Cas9 system, we were able to introduce targeted deletions and repair of the endogenous KRAS gene locus in cell culture. The use of two simultaneous DSBs can be employed for efficient application of homology-directed repair with a large dsDNA donor sequence, thereby improving the efficacy of deriving cells with a desired gene editing outcome. In conclusion, a multiplexed CRISPR/Cas9 editing strategy represents an efficient tool for the editing of complex, heterologous sequence tracts.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 47 条
[1]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[2]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[3]   High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases [J].
Chen, Fuqiang ;
Pruett-Miller, Shondra M. ;
Huang, Yuping ;
Gjoka, Monika ;
Duda, Katarzyna ;
Taunton, Jack ;
Collingwood, Trevor N. ;
Frodin, Morten ;
Davis, Gregory D. .
NATURE METHODS, 2011, 8 (09) :753-U96
[4]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[5]  
CHOULIKA A, 1995, MOL CELL BIOL, V15, P1968
[6]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[7]   Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome [J].
DeKelver, Russell C. ;
Choi, Vivian M. ;
Moehle, Erica A. ;
Paschon, David E. ;
Hockemeyer, Dirk ;
Meijsing, Sebastiaan H. ;
Sancak, Yasemin ;
Cui, Xiaoxia ;
Steine, Eve Line J. ;
Miller, Jeffrey C. ;
Tam, Phillip ;
Bartsevich, Victor V. ;
Meng, Xiangdong ;
Rupniewski, Igor ;
Gopalan, Sunita M. ;
Sun, Helena C. ;
Pitz, Kathleen J. ;
Rock, Jeremy M. ;
Zhang, Lei ;
Davis, Gregory D. ;
Rebar, Edward J. ;
Cheeseman, Iain M. ;
Yamamoto, Keith R. ;
Sabatini, David M. ;
Jaenisch, Rudolf ;
Gregory, Philip D. ;
Urnov, Fyodor D. .
GENOME RESEARCH, 2010, 20 (08) :1133-1142
[8]   Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination [J].
Dickinson, Daniel J. ;
Ward, Jordan D. ;
Reiner, David J. ;
Goldstein, Bob .
NATURE METHODS, 2013, 10 (10) :1028-+
[9]   Life in the Fast Lane: Mammalian Disease Models in the Genomics Era [J].
Dow, Lukas E. ;
Lowe, Scott W. .
CELL, 2012, 148 (06) :1099-1109
[10]   Gene conversion tracts from double-strand break repair in mammalian cells [J].
Elliott, B ;
Richardson, C ;
Winderbaum, J ;
Nickoloff, JA ;
Jasin, M .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (01) :93-101