Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions

被引:25
作者
Payne, L. E. [2 ]
Philippin, G. A. [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
parabolic problems; blow-up; NONEXISTENCE; EQUATIONS; EXISTENCE;
D O I
10.1080/00036811.2011.598865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this article is the determination of upper and lower bounds for the blow-up time t(star) for a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions.
引用
收藏
页码:2245 / 2256
页数:12
相关论文
共 15 条
[1]   Blowup in diffusion equations: A survey [J].
Bandle, C ;
Brunner, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :3-22
[2]   Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition [J].
Enache, Cristian .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :288-292
[3]  
Enache E., GLASGOW MATH J, DOI [10.1017/50017089511000139, DOI 10.1017/50017089511000139]
[4]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[5]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[6]   Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I [J].
Payne, L. E. ;
Philippin, G. A. ;
Piro, S. Vernier .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06) :999-1007
[7]   Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II [J].
Payne, L. E. ;
Philippin, G. A. ;
Piro, S. Vernier .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) :971-978
[8]  
Payne L.E., 2006, Appl. Anal, V85, P1301
[9]  
Payne L.E., BLOW UP PHE IN PRESS
[10]  
Philippin G.A., 1993, MATH METHOD APPL SCI, V29, P105