Polyethylene as a Cosolvent and Catalyst Support in Ring-Opening Metathesis Polymerization

被引:19
|
作者
Suriboot, Jakkrit [1 ]
Hobbs, Christopher E. [2 ]
Guzman, William [1 ]
Bazzi, Hassan S. [3 ]
Bergbreiter, David E. [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA
[2] Texas A&M Univ, Dept Chem, Kingsville, TX 78363 USA
[3] Texas A&M Univ Qatar, Dept Chem, Doha, Qatar
基金
美国国家科学基金会;
关键词
FREE-RADICAL POLYMERIZATION; OLEFIN METATHESIS; RUTHENIUM CATALYSTS; PRECISION POLYMERS; REACTION-PRODUCTS; GRUBBS CATALYST; REMOVAL; COMPLEXES; CARBENES; LIGANDS;
D O I
10.1021/acs.macromol.5b01141
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyethylene oligomers (PEOlig) can be used as cosolvents and sometimes soluble catalyst supports in ring-opening metathesis polymerization (ROMP) reactions. As a catalyst support, this polyolefin serves as an N-heterocydic carbene ligand for a ROMP catalyst, making it soluble at 70 degrees C and insoluble at room temperature. As a cosolvent, unfunctionalized PE oligomers facilitate quantitative separation of PEOlig-bound Ru-catalyst residues from polymer products. In these cases, the insolubility of the unfunctionalized polyethylene (Polywax) and its entrapment of the PEOlig-supported Ru residue in the product phase at room temperature afford ROMP products with Ru contamination lower than other procedures that use soluble catalysts. These separations require only physical processes to separate the product and catalyst residues-no additional solvents are necessary. Control experiments suggest that most (ca. 90%) of the Ru leaching that is seen results from Ru byproducts formed in the vinyl ether quenching step and not from the polymerization processes involving the PEOlig-supported Ru complex.
引用
收藏
页码:5511 / 5516
页数:6
相关论文
共 50 条
  • [31] LIVING RING-OPENING METATHESIS POLYMERIZATION OF CYCLOBUTENE
    WU, Z
    GRUBBS, RH
    WHEELER, DR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 96 - INOR
  • [32] Ring-opening metathesis polymerization in emulsion.
    Claverie, JP
    Viala, S
    Novat, C
    Kanagasabapathy, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U399 - U399
  • [33] Frontal ring-opening metathesis polymerization of dicyclopentadiene
    Mariani, A
    Fiori, S
    Chekanov, Y
    Pojman, JA
    MACROMOLECULES, 2001, 34 (19) : 6539 - 6541
  • [34] HYDROGENATION OF RING-OPENING METATHESIS POLYMERIZATION POLYMERS
    SOHN, BH
    GRATT, JA
    LEE, IK
    COHEN, RE
    JOURNAL OF APPLIED POLYMER SCIENCE, 1995, 58 (06) : 1041 - 1046
  • [35] Living ring-opening metathesis polymerization of cyclopropenes
    Singh, R
    Czekelius, C
    Schrock, RR
    MACROMOLECULES, 2006, 39 (04) : 1316 - 1317
  • [36] Recent progress in ring-opening metathesis polymerization
    Buchmeiser, Michael
    CHIMICA OGGI-CHEMISTRY TODAY, 2007, 25 (05) : 78 - 81
  • [37] Fluorous Dispersion Ring-Opening Metathesis Polymerization
    Song, Sanghoon
    Chang, Yohan
    Oh, Seung-Hwan
    Kim, Soyoon
    Choi, Seungsoo
    Kim, Seyoung
    Lee, Jin-Kyun
    Choi, Soo-Hyung
    Lim, Jeewoo
    MACROMOLECULES, 2022, 55 (05) : 1515 - 1523
  • [38] Ring-opening metathesis polymerization of dicyclopentadiene and tricyclopentadiene
    Eun-Seok Park
    Ji-Hae Park
    Jong Yeob Jeon
    Jong-Un Sung
    Woon-Sung Hwang
    Bun-Yeoul Lee
    Macromolecular Research, 2013, 21 : 114 - 117
  • [39] The synthesis and ring-opening metathesis polymerization of glycomonomers
    Weaver, Lucy G.
    Singh, Yogendra
    Burn, Paul L.
    Blanchfield, Joanne T.
    RSC ADVANCES, 2016, 6 (37) : 31256 - 31264
  • [40] Ring-Opening Metathesis Polymerization in Miniemulsion Using a TEGylated Ruthenium-Based Metathesis Catalyst
    Zhu, Chunyang
    Wu, Xiaowei
    Zenkina, Olena
    Zamora, Matthew T.
    Moffat, Karen
    Crudden, Cathleen M.
    Cunningham, Michael F.
    MACROMOLECULES, 2018, 51 (22) : 9088 - 9096